700	Table 2 Analysis of the et	fect of development type a	and the scale of variation (within o	r
100	1 4010 2. 1 mary 515 01 the C	ieet of development type t	and the searce of variation (wrann o	

among mothers) in offspring size in marine invertebrates with direct or indirect development.

Source	Df	MS	F	Р
Species	22	27.44	2.84	0.009
Development type	2	13.31	1.37	0.273
Scale of Variation	1	15.16	1.57	0.223
Interaction	2	83.30	8.62	0.002
Error	22	9.65		

704	Figure 1. Fitness differentials (ΔW), representing the relative fitness of mothers
705	producing offspring of variable size within-broods (variable strategy), shown for
706	varying levels of environmental variability (CV_E) and within-brood variability (CV_B)
707	for three egg fitness functions varying 16-fold in the viable egg size range: a, $m_{\min} = 30$,
708	$m_{\text{max}} = 40$; b, $m_{\text{min}} = 30$, $m_{\text{max}} = 70$; c, $m_{\text{min}} = 30$, $m_{\text{max}} = 190$ (see inset in panel c). Each
709	point represents mean ΔW for at least 500 simulation runs (equivalent to generations or
710	reproductive bouts) for a given combination of parameters, with each simulation
711	comprising 500 females pursuing each of the two strategies: open circles denote $\Delta W < 0$
712	(invariant strategy advantage) and closed circles denote $\Delta W > 0$ (variable strategy
713	advantage) based on one-sample <i>t</i> -tests ($t > 2.01 $, $P < 0.05$); grey circles represent
714	parameter combinations where ΔW was not significantly different from zero ($P > 0.05$)
715	after 2500 simulation runs. The horizontal line represents equal fitness for the two
716	strategies ($\Delta W = 0$). 95% confidence limits are narrower than the smallest symbol.
717	
718	Figure 2. Mean coefficients of variation in maternal fitness of the variable (open
719	squares) and invariant (closed squares) reproductive strategies at varying levels of
720	environmental variability (CV_E). Each coefficient of fitness variation was based on
721	mean fitness values from 100 generations or reproductive bouts. For the variable

722 strategy, data are pooled for seven levels of within-brood variation (CV_B). Data are based on an egg fitness function with $m_{\min} = 30$ and $m_{\max} = 70$; other functions (see Fig.

724 2) yielded similar patterns (not shown). Bars represent 95% confidence limits. The

725 vertical line represents the lowest CV_E that yielded a significant within-generation

726 advantage for the variable strategy ($\Delta W > 0$).

723

727

- 728 Figure 3. Coefficient of variation in offspring size among different developmental
- 729 modes of marine invertebrates. Open bars indicate mean (± S.E.) coefficient of
- 730 variation among mothers and closed bars indicate mean (± S.E.) within-mothers (NF =
- 731 **non-feeding larvae, F = feeding larvae).**

Figure 2

Figure 3