Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23609
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCui, Tianxiangen_UK
dc.contributor.authorBai, Ruibinen_UK
dc.contributor.authorParkes, Andrew Jen_UK
dc.contributor.authorHe, Fangen_UK
dc.contributor.authorQu, Rongen_UK
dc.contributor.authorLi, Jingpengen_UK
dc.date.accessioned2018-01-24T23:50:58Z-
dc.date.available2018-01-24T23:50:58Z-
dc.date.issued2015en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23609-
dc.description.abstractPortfolio optimization is one of the most important problems in the finance field. The traditional mean-variance model has its drawbacks since it fails to take the market uncertainty into account. In this work, we investigate a two-stage stochastic portfolio optimization model with a comprehensive set of real world trading constraints in order to capture the market uncertainties in terms of future asset prices. A hybrid approach, which integrates genetic algorithm (GA) and a linear programming (LP) solver is proposed in order to solve the model, where GA is used to search for the assets selection heuristically and the LP solver solves the corresponding sub-problems of weight allocation optimally. Scenarios are generated to capture uncertain prices of assets for five benchmark market instances. The computational results indicate that the proposed hybrid algorithm can obtain very promising solutions. Possible future research directions are also discussed.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationCui T, Bai R, Parkes AJ, He F, Qu R & Li J (2015) A Hybrid Genetic Algorithm for a Two-Stage Stochastic Portfolio Optimization With Uncertain Asset Prices. In: 2015 IEEE Congress on Evolutionary Computation (CEC). 2015 IEEE Congress on Evolutionary Computation (CEC2015), Sendai, Japan. Piscataway, NJ, USA: IEEE, pp. 2518-2525. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7257198&tag=1; https://doi.org/10.1109/CEC.2015.7257198en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.titleA Hybrid Genetic Algorithm for a Two-Stage Stochastic Portfolio Optimization With Uncertain Asset Pricesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate3000-05-01en_UK
dc.rights.embargoreason[Cui-et-al-CEC2015.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/CEC.2015.7257198en_UK
dc.citation.spage2518en_UK
dc.citation.epage2525en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7257198&tag=1en_UK
dc.author.emailjli@cs.stir.ac.uken_UK
dc.citation.btitle2015 IEEE Congress on Evolutionary Computation (CEC)en_UK
dc.citation.conferencelocationSendai, Japanen_UK
dc.citation.conferencename2015 IEEE Congress on Evolutionary Computation (CEC2015)en_UK
dc.citation.date31/05/2015en_UK
dc.citation.isbn978-1-4799-7492-4en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationUniversity of Nottingham Ningbo Chinaen_UK
dc.contributor.affiliationUniversity of Nottingham Ningbo Chinaen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000380444802072en_UK
dc.identifier.scopusid2-s2.0-84963607064en_UK
dc.identifier.wtid561383en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dcterms.dateAccepted2015-05-31en_UK
dc.date.filedepositdate2016-07-07en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorCui, Tianxiang|en_UK
local.rioxx.authorBai, Ruibin|en_UK
local.rioxx.authorParkes, Andrew J|en_UK
local.rioxx.authorHe, Fang|en_UK
local.rioxx.authorQu, Rong|en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-05-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameCui-et-al-CEC2015.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4799-7492-4en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Cui-et-al-CEC2015.pdfFulltext - Published Version271.54 kBAdobe PDFUnder Embargo until 3000-05-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.