Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26254
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHall, Adam Jamesen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorShaikh, M Guftaren_UK
dc.contributor.editorLiu, CLen_UK
dc.contributor.editorHussain, Aen_UK
dc.contributor.editorLuo, Ben_UK
dc.contributor.editorTan, KCen_UK
dc.contributor.editorZeng, Yen_UK
dc.contributor.editorZhang, Zen_UK
dc.date.accessioned2017-12-01T00:38:50Z-
dc.date.available2017-12-01T00:38:50Z-
dc.date.issued2016en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26254-
dc.description.abstractThis study proposes a new diagnostic approach based on application of machine learning techniques to anthropometric patient features in order to create a predictive model capable of diagnosing insulin resistance (HOMA-IR).  As part of the study, a dataset was built using existing paediatric patient data containing subjects with and without insulin resistance. A novel machine learning model was then developed to predict the presence of insulin resistance based on dependent biometric variables with an optimal level of accuracy. This model is made publicly available through the implementation of a clinical decision support system (CDSS) prototype. The model classifies insulin resistant individuals with 81% accuracy and 75% of individuals without insulin resistance. This gives an overall accuracy of 78%. The user testing feedback for the CDSS is largely positive.  Best practices were followed for building the model in accordance to those set out in previous studies. The biometric profile of insulin resistance represented in the model is likely to become better fitted to that of insulin resistance in the general population as more data are aggregated from sources. The infrastructure of the CDSS has also been built so that cross platform integration will be possible in future work.  The current methods used by clinicians to identify insulin resistance in children are limited by invasive and clinically expensive blood testing. The benefits of this model would be to reduce the cost of clinical diagnosis and as a result, could also be used as a screening tool in the general childhood population.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationHall AJ, Hussain A & Shaikh MG (2016) Predicting insulin resistance in children using a machine-learning-based clinical decision support system. In: Liu C, Hussain A, Luo B, Tan K, Zeng Y & Zhang Z (eds.) Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes in Computer Science, 10023. BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems, Beijing, China, 28.11.2016-30.11.2016. Cham, Switzerland: Springer, pp. 274-283. https://doi.org/10.1007/978-3-319-49685-6_25en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 10023en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectMachine learningen_UK
dc.subjectEnsemble learningen_UK
dc.subjectClinical Decision Support Systemen_UK
dc.subjectInsulin resistanceen_UK
dc.subjectDiabetesen_UK
dc.subjectPaediatricsen_UK
dc.titlePredicting insulin resistance in children using a machine-learning-based clinical decision support systemen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate3000-10-14en_UK
dc.rights.embargoreason[Hall_etal_LNCS_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-319-49685-6_25en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage274en_UK
dc.citation.epage283en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.btitleAdvances in Brain Inspired Cognitive Systems. BICS 2016en_UK
dc.citation.conferencedates2016-11-28 - 2016-11-30en_UK
dc.citation.conferencelocationBeijing, Chinaen_UK
dc.citation.conferencenameBICS 2016: 8th International Conference on Brain-Inspired Cognitive Systemsen_UK
dc.citation.date13/11/2016en_UK
dc.citation.isbn978-3-319-49684-9en_UK
dc.citation.isbn978-3-319-49685-6en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.identifier.scopusid2-s2.0-84997327297en_UK
dc.identifier.wtid538604en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-08-10en_UK
dcterms.dateAccepted2016-08-10en_UK
dc.date.filedepositdate2017-11-30en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorHall, Adam James|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorShaikh, M Guftar|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.contributorLiu, CL|en_UK
local.rioxx.contributorHussain, A|en_UK
local.rioxx.contributorLuo, B|en_UK
local.rioxx.contributorTan, KC|en_UK
local.rioxx.contributorZeng, Y|en_UK
local.rioxx.contributorZhang, Z|en_UK
local.rioxx.freetoreaddate3000-10-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameHall_etal_LNCS_2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-49685-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Hall_etal_LNCS_2016.pdfFulltext - Published Version842.11 kBAdobe PDFUnder Embargo until 3000-10-14    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.