Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27631
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConnor, Richarden_UK
dc.contributor.authorVadicamo, Luciaen_UK
dc.contributor.authorRabitti, Faustoen_UK
dc.contributor.editorBeecks, Cen_UK
dc.contributor.editorBorutta, Fen_UK
dc.contributor.editorKröger, Pen_UK
dc.contributor.editorSeidl, Ten_UK
dc.date.accessioned2018-08-17T00:06:00Z-
dc.date.available2018-08-17T00:06:00Z-
dc.date.issued2017-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27631-
dc.description.abstractIn a metric space, triangle inequality implies that, for any three objects, a triangle with edge lengths corresponding to their pairwise distances can be formed. The n-point property is a generalisation of this where, for any (n+1) objects in the space, there exists an n-dimensional simplex whose edge lengths correspond to the distances among the objects. In general, metric spaces do not have this property; however in 1953, Blumenthal showed that any semi-metric space which is isometrically embeddable in a Hilbert space also has the n-point property. We have previously called such spaces supermetric spaces, and have shown that many metric spaces are also supermetric, including Euclidean, Cosine, Jensen-Shannon and Triangular spaces of any dimension. Here we show how such simplexes can be constructed from only their edge lengths, and we show how the geometry of the simplexes can be used to determine lower and upper bounds on unknown distances within the original space. By increasing the number of dimensions, these bounds converge to the true distance. Finally we show that for any Hilbert-embeddable space, it is possible to construct Euclidean spaces of arbitrary dimensions, from which these lower and upper bounds of the original space can be determined. These spaces may be much cheaper to query than the original. For similarity search, the engineering tradeoffs are good: we show significant reductions in data size and metric cost with little loss of accuracy, leading to a significant overall improvement in exact search performance.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationConnor R, Vadicamo L & Rabitti F (2017) High-dimensional simplexes for supermetric search. In: Beecks C, Borutta F, Kröger P & Seidl T (eds.) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science, 10609. Similarity Search and Applications 10th International Conference, SISAP 2017, Munich, 04.10.2017-06.10.2017. Cham, Switzerland: Springer, pp. 96-109. https://doi.org/10.1007/978-3-319-68474-1_7en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 10609en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Beecks D, Borutta F, Kröger P, Seidl T (eds) Similarity Search and Applications. SISAP 2017. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-68474-1_7en_UK
dc.subjectSupermetric spaceen_UK
dc.subjectmetric searchen_UK
dc.subjectmetric embeddingen_UK
dc.subjectdimensionality reductionen_UK
dc.titleHigh-dimensional simplexes for supermetric searchen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-319-68474-1_7en_UK
dc.citation.jtitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage96en_UK
dc.citation.epage109en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleSimilarity Search and Applications. SISAP 2017en_UK
dc.citation.conferencedates2017-10-04 - 2017-10-06en_UK
dc.citation.conferencelocationMunichen_UK
dc.citation.conferencenameSimilarity Search and Applications 10th International Conference, SISAP 2017en_UK
dc.citation.date01/08/2017en_UK
dc.citation.isbn978-3-319-68473-4en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationVisual Computing Group, CNR-ISTIen_UK
dc.contributor.affiliationVisual Computing Group, CNR-ISTIen_UK
dc.identifier.isiWOS:000616693000007en_UK
dc.identifier.scopusid2-s2.0-85031297997en_UK
dc.identifier.wtid956062en_UK
dc.contributor.orcid0000-0003-4734-8103en_UK
dc.date.accepted2017-07-17en_UK
dcterms.dateAccepted2017-07-17en_UK
dc.date.filedepositdate2018-08-16en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorConnor, Richard|0000-0003-4734-8103en_UK
local.rioxx.authorVadicamo, Lucia|en_UK
local.rioxx.authorRabitti, Fausto|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorBeecks, C|en_UK
local.rioxx.contributorBorutta, F|en_UK
local.rioxx.contributorKröger, P|en_UK
local.rioxx.contributorSeidl, T|en_UK
local.rioxx.freetoreaddate2018-08-16en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-08-16|en_UK
local.rioxx.filenameConnor_etal_SISAP2017_High_dimensional_simplexes_for_metric_search.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-68473-4en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Connor_etal_SISAP2017_High_dimensional_simplexes_for_metric_search.pdfFulltext - Accepted Version397.52 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.