Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConnor, Richarden_UK
dc.contributor.editorAmsaleg, Len_UK
dc.contributor.editorHoule, MEen_UK
dc.contributor.editorSchubert, Een_UK
dc.date.accessioned2018-08-21T14:36:29Z-
dc.date.available2018-08-21T14:36:29Z-
dc.date.issued2016-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27668-
dc.description.abstractOur context of interest is tree-structured exact search in metric spaces. We make the simple observation that, the deeper a data item is within the tree, the higher the probability of that item being excluded from a search. Assuming a fixed and independent probability p of any subtree being excluded at query time, the probability of an individual data item being accessed is (1−p)d for a node at depth d. In a balanced binary tree half of the data will be at the maximum depth of the tree so this effect should be significant and observable. We test this hypothesis with two experiments on partition trees. First, we force a balance by adjusting the partition/exclusion criteria, and compare this with unbalanced trees where the mean data depth is greater. Second, we compare a generic hyperplane tree with a monotone hyperplane tree, where also the mean depth is greater. In both cases the tree with the greater mean data depth performs better in high-dimensional spaces. We then experiment with increasing the mean depth of nodes by using a small, fixed set of reference points to make exclusion decisions over the whole tree, so that almost all of the data resides at the maximum depth. Again this can be seen to reduce the overall cost of indexing. Furthermore, we observe that having already calculated reference point distances for all data, a final filtering can be applied if the distance table is retained. This reduces further the number of distance calculations required, whilst retaining scalability. The final structure can in fact be viewed as a hybrid between a generic hyperplane tree and a LAESA search structure.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationConnor R (2016) Reference point hyperplane trees. In: Amsaleg L, Houle M & Schubert E (eds.) Similarity Search and Applications. SISAP 2016. Lecture Notes in Computer Science, 9939. International Conference on Similarity Search and Applications, SISAP 2016, Tokyo, Japan, 24.10.2016-26.10.2016. Cham, Switzerland: Springer, pp. 65-78. https://doi.org/10.1007/978-3-319-46759-7_5en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 9939en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Amsaleg L, Houle ME & Schubert E (eds.) Similarity Search and Applications. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-46759-7_5en_UK
dc.titleReference point hyperplane treesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-319-46759-7_5en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage65en_UK
dc.citation.epage78en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailrichard.connor@stir.ac.uken_UK
dc.citation.btitleSimilarity Search and Applications. SISAP 2016en_UK
dc.citation.conferencedates2016-10-24 - 2016-10-26en_UK
dc.citation.conferencelocationTokyo, Japanen_UK
dc.citation.conferencenameInternational Conference on Similarity Search and Applications, SISAP 2016en_UK
dc.citation.date27/09/2016en_UK
dc.citation.isbn978-3-319-46758-0en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.isiWOS:000389801100005en_UK
dc.identifier.scopusid2-s2.0-84989880881en_UK
dc.identifier.wtid956071en_UK
dc.contributor.orcid0000-0003-4734-8103en_UK
dc.date.accepted2016-07-07en_UK
dcterms.dateAccepted2016-07-07en_UK
dc.date.filedepositdate2018-08-16en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorConnor, Richard|0000-0003-4734-8103en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorAmsaleg, L|en_UK
local.rioxx.contributorHoule, ME|en_UK
local.rioxx.contributorSchubert, E|en_UK
local.rioxx.freetoreaddate2018-08-16en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-08-16|en_UK
local.rioxx.filenameConnor_SISAP2016_Reference_point_hyperplane_trees.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-46758-0en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Connor_SISAP2016_Reference_point_hyperplane_trees.pdfFulltext - Accepted Version577.87 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.