Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27774
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDashtipour, Kiaen_UK
dc.contributor.authorGogate, Mandaren_UK
dc.contributor.authorAdeel, Ahsanen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorAlqarafi, Abdulrahmanen_UK
dc.contributor.authorDurrani, Tariqen_UK
dc.contributor.editorLiang, Qen_UK
dc.contributor.editorMu, Jen_UK
dc.contributor.editorJia, Men_UK
dc.contributor.editorWang, Wen_UK
dc.contributor.editorFeng, Xen_UK
dc.contributor.editorZhang, Ben_UK
dc.date.accessioned2018-09-11T00:01:24Z-
dc.date.available2018-09-11T00:01:24Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27774-
dc.description.abstractIn recent years, the use of internet and correspondingly the number of online reviews, comments and opinions have increased significantly. It is indeed very difficult for humans to read these opinions and classify them accurately. Consequently, there is a need for an automated system to process this big data. In this paper, a novel sentiment analysis framework for Persian language has been proposed. The proposed framework comprises three basic steps: pre-processing, feature extraction, and support vector machine (SVM) based classification. The performance of the proposed framework has been evaluated taking into account different features combinations. The simulation results have revealed that the best performance could be achieved by integrating unigram, bigram, and trigram features.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationDashtipour K, Gogate M, Adeel A, Hussain A, Alqarafi A & Durrani T (2019) A comparative study of Persian sentiment analysis based on different feature combinations. In: Liang Q, Mu J, Jia M, Wang W, Feng X & Zhang B (eds.) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, 463. CSPS 2017: Communications, Signal Processing, and System, Harbin, China, 14.07.2017-16.07.2017. Cham, Switzerland: Springer, pp. 2288-2294. https://doi.org/10.1007/978-981-10-6571-2_279en_UK
dc.relation.ispartofseriesLecture Notes in Electrical Engineering, 463en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of an paper published in Liang Q, Mu J, Jia M, Wang W, Feng X & Zhang B (eds.) Communications, Signal Processing, and Systems. CSPS 2017. The final authenticated version is available online at: https://doi.org/Liang Q, Mu J, Jia M, Wang W, Feng X & Zhang B (eds.) Communications, Signal Processing, and Systems. CSPS 2017en_UK
dc.subjectSentiment analysisen_UK
dc.subjectPersianen_UK
dc.subjectFeature selectionen_UK
dc.subjectN-gramen_UK
dc.titleA comparative study of Persian sentiment analysis based on different feature combinationsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-981-10-6571-2_279en_UK
dc.citation.issn1876-1100en_UK
dc.citation.spage2288en_UK
dc.citation.epage2294en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.citation.btitleCommunications, Signal Processing, and Systems. CSPS 2017en_UK
dc.citation.conferencedates2017-07-14 - 2017-07-16en_UK
dc.citation.conferencelocationHarbin, Chinaen_UK
dc.citation.conferencenameCSPS 2017: Communications, Signal Processing, and Systemen_UK
dc.citation.date07/06/2018en_UK
dc.citation.isbn978-981-10-6570-5; 978-981-10-6571-2en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.isiWOS:000448618900279en_UK
dc.identifier.scopusid2-s2.0-85048676206en_UK
dc.identifier.wtid943493en_UK
dc.contributor.orcid0000-0001-8651-5117en_UK
dc.contributor.orcid0000-0003-1712-9014en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2017-06-15en_UK
dcterms.dateAccepted2017-06-15en_UK
dc.date.filedepositdate2018-09-10en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorDashtipour, Kia|0000-0001-8651-5117en_UK
local.rioxx.authorGogate, Mandar|0000-0003-1712-9014en_UK
local.rioxx.authorAdeel, Ahsan|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorAlqarafi, Abdulrahman|en_UK
local.rioxx.authorDurrani, Tariq|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.contributorLiang, Q|en_UK
local.rioxx.contributorMu, J|en_UK
local.rioxx.contributorJia, M|en_UK
local.rioxx.contributorWang, W|en_UK
local.rioxx.contributorFeng, X|en_UK
local.rioxx.contributorZhang, B|en_UK
local.rioxx.freetoreaddate2018-09-10en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-09-10|en_UK
local.rioxx.filenameA Comparative Study of Persian Sentiment Analysis based on different Feature Combinations.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-981-10-6570-5; 978-981-10-6571-2en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
A Comparative Study of Persian Sentiment Analysis based on different Feature Combinations.pdfFulltext - Accepted Version827.57 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.