Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27978
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBöschen, Falken_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.contributor.editorAmsaleg, Len_UK
dc.contributor.editorGuðmundsson, Gen_UK
dc.contributor.editorGurrin, Cen_UK
dc.contributor.editorJónsson, Ben_UK
dc.contributor.editorSatoh, Sen_UK
dc.date.accessioned2018-10-17T00:04:00Z-
dc.date.available2018-10-17T00:04:00Z-
dc.date.issued2017en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27978-
dc.description.abstractSo far, there has not been a comparative evaluation of different approaches for text extraction from scholarly figures. In order to fill this gap, we have defined a generic pipeline for text extraction that abstracts from the existing approaches as documented in the literature. In this paper, we use this generic pipeline to systematically evaluate and compare 32 configurations for text extraction over four datasets of scholarly figures of different origin and characteristics. In total, our experiments have been run over more than 400 manually labeled figures. The experimental results show that the approach BS-4OS results in the best F-measure of 0.67 for the Text Location Detection and the best average Levenshtein Distance of 4.71 between the recognized text and the gold standard on all four datasets using the Ocropy OCR engine.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationBöschen F & Scherp A (2017) A comparison of approaches for automated text extraction from scholarly figures. In: Amsaleg L, Guðmundsson G, Gurrin C, Jónsson B & Satoh S (eds.) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science, 10132. MMM2017: 23rd International Conference on Multimedia Modeling, Reykjavik, Iceland, 04.01.2017-06.01.2017. Cham, Switzerland: Springer, pp. 15-27. https://doi.org/10.1007/978-3-319-51811-4_2en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 10132en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectScholarly figuresen_UK
dc.subjectText extractionen_UK
dc.subjectComparisonen_UK
dc.titleA comparison of approaches for automated text extraction from scholarly figuresen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[BoschenScherp-LNCS-2017.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-319-51811-4_2en_UK
dc.citation.jtitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage15en_UK
dc.citation.epage27en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleMultiMedia Modeling. MMM 2017en_UK
dc.citation.conferencedates2017-01-04 - 2017-01-06en_UK
dc.citation.conferencelocationReykjavik, Icelanden_UK
dc.citation.conferencenameMMM2017: 23rd International Conference on Multimedia Modelingen_UK
dc.citation.date31/12/2016en_UK
dc.citation.isbn978-3-319-51810-7en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.identifier.scopusid2-s2.0-85009726781en_UK
dc.identifier.wtid1007426en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2016-10-22en_UK
dcterms.dateAccepted2016-10-22en_UK
dc.date.filedepositdate2018-10-16en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBöschen, Falk|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.contributorAmsaleg, L|en_UK
local.rioxx.contributorGuðmundsson, G|en_UK
local.rioxx.contributorGurrin, C|en_UK
local.rioxx.contributorJónsson, B|en_UK
local.rioxx.contributorSatoh, S|en_UK
local.rioxx.freetoreaddate2266-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameBoschenScherp-LNCS-2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-51810-7en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
BoschenScherp-LNCS-2017.pdfFulltext - Published Version463.55 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.