Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/28017
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nishioka, Chifumi | en_UK |
dc.contributor.author | Scherp, Ansgar | en_UK |
dc.date.accessioned | 2018-10-24T14:34:13Z | - |
dc.date.available | 2018-10-24T14:34:13Z | - |
dc.date.issued | 2017-12-31 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/28017 | - |
dc.description.abstract | Many Linked Open Data applications require fresh copies of RDF data at their local repositories. Since RDF documents constantly change and those changes are not automatically propagated to the LOD applications, it is important to regularly visit the RDF documents to refresh the local copies and keep them up-to-date. For this purpose, crawling strategies determine which RDF documents should be preferentially fetched. Traditional crawling strategies rely only on how an RDF document has been modified in the past. In contrast, we predict on the triple level whether a change will occur in the future. We use the weekly snapshots of the DyLDO dataset as well as the monthly snapshots of the Wikidata dataset. First, we conduct an in-depth analysis of the life span of triples in RDF documents. Through the analysis, we identify which triples are stable and which are ephemeral. We introduce different features based on the triples and apply a simple but effective linear regression model. Second, we propose a novel crawling strategy based on the linear regression model. We conduct two experimental setups where we vary the amount of available bandwidth as well as iteratively observe the quality of the local copies over time. The results demonstrate that the novel crawling strategy outperforms the state of the art in both setups. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | ACM | en_UK |
dc.relation | Nishioka C & Scherp A (2017) Keeping linked open data caches up-to-date by predicting the life-time of RDF triples. In: Proceedings of the International Conference on Web Intelligence WI '17. International Conference on Web Intelligence 2017, Leipzig, Germany, 23.08.2017-26.08.2017. New York: ACM, pp. 73-80. https://doi.org/10.1145/3106426.3106463 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.title | Keeping linked open data caches up-to-date by predicting the life-time of RDF triples | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [Nishioka-Scherp 2017.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1145/3106426.3106463 | en_UK |
dc.citation.jtitle | Proceedings - 2017 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2017 | en_UK |
dc.citation.spage | 73 | en_UK |
dc.citation.epage | 80 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | European Commission | en_UK |
dc.author.email | ansgar.scherp@stir.ac.uk | en_UK |
dc.citation.btitle | Proceedings of the International Conference on Web Intelligence WI '17 | en_UK |
dc.citation.conferencedates | 2017-08-23 - 2017-08-26 | en_UK |
dc.citation.conferencelocation | Leipzig, Germany | en_UK |
dc.citation.conferencename | International Conference on Web Intelligence 2017 | en_UK |
dc.citation.isbn | 9781450349512 | en_UK |
dc.publisher.address | New York | en_UK |
dc.contributor.affiliation | Kyoto University | en_UK |
dc.contributor.affiliation | University of Kiel | en_UK |
dc.identifier.isi | WOS:000426965100010 | en_UK |
dc.identifier.scopusid | 2-s2.0-85031026955 | en_UK |
dc.identifier.wtid | 1007205 | en_UK |
dc.contributor.orcid | 0000-0002-2653-9245 | en_UK |
dc.date.accepted | 2017-06-06 | en_UK |
dcterms.dateAccepted | 2017-06-06 | en_UK |
dc.date.filedepositdate | 2018-10-19 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Nishioka, Chifumi| | en_UK |
local.rioxx.author | Scherp, Ansgar|0000-0002-2653-9245 | en_UK |
local.rioxx.project | Project ID unknown|European Commission (Horizon 2020)| | en_UK |
local.rioxx.freetoreaddate | 2267-12-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Nishioka-Scherp 2017.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 9781450349512 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Nishioka-Scherp 2017.pdf | Fulltext - Published Version | 886.29 kB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.