Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNishioka, Chifumien_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.date.accessioned2018-10-24T14:34:13Z-
dc.date.available2018-10-24T14:34:13Z-
dc.date.issued2017-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28017-
dc.description.abstractMany Linked Open Data applications require fresh copies of RDF data at their local repositories. Since RDF documents constantly change and those changes are not automatically propagated to the LOD applications, it is important to regularly visit the RDF documents to refresh the local copies and keep them up-to-date. For this purpose, crawling strategies determine which RDF documents should be preferentially fetched. Traditional crawling strategies rely only on how an RDF document has been modified in the past. In contrast, we predict on the triple level whether a change will occur in the future. We use the weekly snapshots of the DyLDO dataset as well as the monthly snapshots of the Wikidata dataset. First, we conduct an in-depth analysis of the life span of triples in RDF documents. Through the analysis, we identify which triples are stable and which are ephemeral. We introduce different features based on the triples and apply a simple but effective linear regression model. Second, we propose a novel crawling strategy based on the linear regression model. We conduct two experimental setups where we vary the amount of available bandwidth as well as iteratively observe the quality of the local copies over time. The results demonstrate that the novel crawling strategy outperforms the state of the art in both setups.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationNishioka C & Scherp A (2017) Keeping linked open data caches up-to-date by predicting the life-time of RDF triples. In: Proceedings of the International Conference on Web Intelligence WI '17. International Conference on Web Intelligence 2017, Leipzig, Germany, 23.08.2017-26.08.2017. New York: ACM, pp. 73-80. https://doi.org/10.1145/3106426.3106463en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.titleKeeping linked open data caches up-to-date by predicting the life-time of RDF triplesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Nishioka-Scherp 2017.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1145/3106426.3106463en_UK
dc.citation.jtitleProceedings - 2017 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2017en_UK
dc.citation.spage73en_UK
dc.citation.epage80en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleProceedings of the International Conference on Web Intelligence WI '17en_UK
dc.citation.conferencedates2017-08-23 - 2017-08-26en_UK
dc.citation.conferencelocationLeipzig, Germanyen_UK
dc.citation.conferencenameInternational Conference on Web Intelligence 2017en_UK
dc.citation.isbn9781450349512en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationKyoto Universityen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.identifier.isiWOS:000426965100010en_UK
dc.identifier.scopusid2-s2.0-85031026955en_UK
dc.identifier.wtid1007205en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2017-06-06en_UK
dcterms.dateAccepted2017-06-06en_UK
dc.date.filedepositdate2018-10-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorNishioka, Chifumi|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2267-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameNishioka-Scherp 2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781450349512en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Nishioka-Scherp 2017.pdfFulltext - Published Version886.29 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.