Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGalke, Lukasen_UK
dc.contributor.authorMai, Florianen_UK
dc.contributor.authorSchelten, Alanen_UK
dc.contributor.authorBrunsch, Dennisen_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.date.accessioned2018-10-24T14:34:28Z-
dc.date.available2018-10-24T14:34:28Z-
dc.date.issued2017-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28018-
dc.description.abstractWe conduct the first systematic comparison of automated semantic annotation based on either the full-text or only on the title metadata of documents. Apart from the prominent text classification baselines kNN and SVM, we also compare recent techniques of Learning to Rank and neural networks and revisit the traditional methods logistic regression, Rocchio, and Naive Bayes. Across three of our four datasets, the performance of the classifications using only titles reaches over 90% of the quality compared to the performance when using the full-text.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationGalke L, Mai F, Schelten A, Brunsch D & Scherp A (2017) Using Titles vs. Full-text as source for automated semantic document annotation. In: Proceedings of the Knowledge Capture Conference K-Cap 2017. Knowledge Capture Conference 2017, Austin, TX, USA, 04.12.2017-06.12.2017. New York: ACM, p. Article 20. https://doi.org/10.1145/3148011.3148039en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectMulti-label classificationen_UK
dc.subjectdocument analysisen_UK
dc.subjectsemantic annotationen_UK
dc.titleUsing Titles vs. Full-text as source for automated semantic document annotationen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Galke et al 2017.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1145/3148011.3148039en_UK
dc.citation.jtitleProceedings of the Knowledge Capture Conference, K-CAP 2017en_UK
dc.citation.spageArticle 20en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleProceedings of the Knowledge Capture Conference K-Cap 2017en_UK
dc.citation.conferencedates2017-12-04 - 2017-12-06en_UK
dc.citation.conferencelocationAustin, TX, USAen_UK
dc.citation.conferencenameKnowledge Capture Conference 2017en_UK
dc.citation.isbn9781450355537en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.identifier.scopusid2-s2.0-85040617808en_UK
dc.identifier.wtid1007182en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2017-10-18en_UK
dcterms.dateAccepted2017-10-18en_UK
dc.date.filedepositdate2018-10-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGalke, Lukas|en_UK
local.rioxx.authorMai, Florian|en_UK
local.rioxx.authorSchelten, Alan|en_UK
local.rioxx.authorBrunsch, Dennis|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2267-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameGalke et al 2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781450355537en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Galke et al 2017.pdfFulltext - Published Version447.45 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.