Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28019
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVagliano, Iacopoen_UK
dc.contributor.authorMonti, Diegoen_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.contributor.authorMorisio, Maurizioen_UK
dc.date.accessioned2018-10-24T14:34:39Z-
dc.date.available2018-10-24T14:34:39Z-
dc.date.issued2017-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28019-
dc.description.abstractNowadays, most recommender systems exploit user-provided ratings to infer their preferences. However, the growing popularity of social and e-commerce websites has encouraged users to also share comments and opinions through textual reviews. In this paper, we introduce a new recommendation approach which exploits the semantic annotation of user reviews to extract useful and non-trivial information about the items to recommend. It also relies on the knowledge freely available in the Web of Data, notably in DBpedia and Wikidata, to discover other resources connected with the annotated entities. We evaluated our approach in three domains, using both DBpedia and Wikidata. The results showed that our solution provides a better ranking than another recommendation method based on the Web of Data, while it improves in novelty with respect to traditional techniques based on ratings.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationVagliano I, Monti D, Scherp A & Morisio M (2017) Content recommendation through semantic annotation of user reviews and linked data. In: Proceedings of the Knowledge Capture Conference. Knowledge Capture Conference K-Cap 2017, Austin, TX, USA, 04.12.2017-06.12.2017. New York: ACM, p. Article 32. https://doi.org/10.1145/3148011.3148035en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectRecommender systemsen_UK
dc.subjectuser reviewsen_UK
dc.subjectsemantic annotationen_UK
dc.subjectlinked dataen_UK
dc.subjectweb of dataen_UK
dc.subjectsemantic weben_UK
dc.subjectDBpediaen_UK
dc.subjectWikidataen_UK
dc.titleContent recommendation through semantic annotation of user reviews and linked dataen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Vagliano et al 2017.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1145/3148011.3148035en_UK
dc.citation.jtitleProceedings of the Knowledge Capture Conference, K-CAP 2017en_UK
dc.citation.spageArticle 32en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleProceedings of the Knowledge Capture Conferenceen_UK
dc.citation.conferencedates2017-12-04 - 2017-12-06en_UK
dc.citation.conferencelocationAustin, TX, USAen_UK
dc.citation.conferencenameKnowledge Capture Conference K-Cap 2017en_UK
dc.citation.isbn9781450355537en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.identifier.scopusid2-s2.0-85040632257en_UK
dc.identifier.wtid1007176en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2017-10-18en_UK
dcterms.dateAccepted2017-10-18en_UK
dc.date.filedepositdate2018-10-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorVagliano, Iacopo|en_UK
local.rioxx.authorMonti, Diego|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.authorMorisio, Maurizio|en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2267-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameVagliano et al 2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781450355537en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Vagliano et al 2017.pdfFulltext - Published Version519.78 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.