Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/28020
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mai, Florian | en_UK |
dc.contributor.author | Galke, Lukas | en_UK |
dc.contributor.author | Scherp, Ansgar | en_UK |
dc.date.accessioned | 2018-10-24T14:34:50Z | - |
dc.date.available | 2018-10-24T14:34:50Z | - |
dc.date.issued | 2018-12-31 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/28020 | - |
dc.description.abstract | For (semi-)automated subject indexing systems in digital libraries, it is often more practical to use metadata such as the title of a publication instead of the full-text or the abstract. Therefore, it is desirable to have good text mining and text classification algorithms that operate well already on the title of a publication. So far, the classification performance on titles is not competitive with the performance on the full-texts if the same number of training samples is used for training. However, it is much easier to obtain title data in large quantities and to use it for training than full-text data. In this paper, we investigate the question how models obtained from training on increasing amounts of title training data compare to models from training on a constant number of full-texts. We evaluate this question on a large-scale dataset from the medical domain (PubMed) and from economics (EconBiz). In these datasets, the titles and annotations of millions of publications are available, and they outnumber the available full-texts by a factor of 20 and 15, respectively. To exploit these large amounts of data to their full potential, we develop three strong deep learning classifiers and evaluate their performance on the two datasets. The results are promising. On the EconBiz dataset, all three classifiers outperform their full-text counterparts by a large margin. The best title-based classifier outperforms the best full-text method by 9.4%. On the PubMed dataset, the best title-based method almost reaches the performance of the best full-text classifier, with a difference of only 2.9%. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | ACM | en_UK |
dc.relation | Mai F, Galke L & Scherp A (2018) Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Competitive Performance to Full-Text. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. 18th ACM/IEEE on Joint Conference on Digital Libraries, Fort Worth, TX, USA, 03.06.2018-07.06.2018. New York: ACM, pp. 169-178. https://doi.org/10.1145/3197026.3197039 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | text classification | en_UK |
dc.subject | deep learning | en_UK |
dc.subject | digital libraries | en_UK |
dc.title | Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Competitive Performance to Full-Text | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [p169-mai.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1145/3197026.3197039 | en_UK |
dc.citation.jtitle | Proceedings of the ACM/IEEE Joint Conference on Digital Libraries | en_UK |
dc.citation.spage | 169 | en_UK |
dc.citation.epage | 178 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | European Commission | en_UK |
dc.author.email | ansgar.scherp@stir.ac.uk | en_UK |
dc.citation.btitle | Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries | en_UK |
dc.citation.conferencedates | 2018-06-03 - 2018-06-07 | en_UK |
dc.citation.conferencelocation | Fort Worth, TX, USA | en_UK |
dc.citation.conferencename | 18th ACM/IEEE on Joint Conference on Digital Libraries | en_UK |
dc.citation.isbn | 9781450351782 | en_UK |
dc.publisher.address | New York | en_UK |
dc.contributor.affiliation | University of Kiel | en_UK |
dc.contributor.affiliation | University of Kiel | en_UK |
dc.contributor.affiliation | University of Kiel | en_UK |
dc.identifier.scopusid | 2-s2.0-85048891192 | en_UK |
dc.identifier.wtid | 1007148 | en_UK |
dc.contributor.orcid | 0000-0002-2653-9245 | en_UK |
dc.date.accepted | 2018-03-08 | en_UK |
dcterms.dateAccepted | 2018-03-08 | en_UK |
dc.date.filedepositdate | 2018-10-18 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Mai, Florian| | en_UK |
local.rioxx.author | Galke, Lukas| | en_UK |
local.rioxx.author | Scherp, Ansgar|0000-0002-2653-9245 | en_UK |
local.rioxx.project | Project ID unknown|European Commission (Horizon 2020)| | en_UK |
local.rioxx.freetoreaddate | 2268-12-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | p169-mai.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 9781450351782 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
p169-mai.pdf | Fulltext - Published Version | 1.2 MB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.