Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/28025
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Schaible, Johann | en_UK |
dc.contributor.author | Szekely, Pedro | en_UK |
dc.contributor.author | Scherp, Ansgar | en_UK |
dc.contributor.editor | Sack, H | en_UK |
dc.contributor.editor | Blomqvist, E | en_UK |
dc.contributor.editor | d'Aquin, M | en_UK |
dc.contributor.editor | Ghidini, C | en_UK |
dc.contributor.editor | Paolo Ponzetto, S | en_UK |
dc.contributor.editor | Lange, C | en_UK |
dc.date.accessioned | 2018-10-24T14:36:15Z | - |
dc.date.available | 2018-10-24T14:36:15Z | - |
dc.date.issued | 2016-12-31 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/28025 | - |
dc.description.abstract | When modeling Linked Open Data (LOD), reusing appropriate vocabulary terms to represent the data is difficult, because there are many vocabularies to choose from. Vocabulary term recommendations could alleviate this situation. We present a user study evaluating a vocabulary term recommendation service that is based on how other data providers have used RDF classes and properties in the LOD cloud. Our study compares the machine learning technique Learning to Rank (L2R), the classical data mining approach Association Rule mining (AR), and a baseline that does not provide any recommendations. Results show that utilizing AR, participants needed less time and less effort to model the data, which in the end resulted in models of better quality. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer Verlag | en_UK |
dc.relation | Schaible J, Szekely P & Scherp A (2016) Comparing vocabulary term recommendations using association rules and learning to rank: A user study. In: Sack H, Blomqvist E, d'Aquin M, Ghidini C, Paolo Ponzetto S & Lange C (eds.) The Semantic Web. Latest Advances and New Domains. ESWC 2016, volume 9678. Lecture Notes in Computer Science, 9678. European Semantic Web Conference (ESWC) 2016, Crete, Greece, 29.05.2016-02.06.2016. Cham, Switzerland: Springer Verlag, pp. 214-230. https://doi.org/10.1007/978-3-319-34129-3_14 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 9678 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Association rule | en_UK |
dc.subject | resource description framework | en_UK |
dc.subject | user study | en_UK |
dc.subject | modeling task | en_UK |
dc.subject | association rule mining | en_UK |
dc.title | Comparing vocabulary term recommendations using association rules and learning to rank: A user study | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [Schaible et al 2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/978-3-319-34129-3_14 | en_UK |
dc.citation.jtitle | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.volume | 9678 | en_UK |
dc.citation.spage | 214 | en_UK |
dc.citation.epage | 230 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | ansgar.scherp@stir.ac.uk | en_UK |
dc.citation.btitle | The Semantic Web. Latest Advances and New Domains. ESWC 2016 | en_UK |
dc.citation.conferencedates | 2016-05-29 - 2016-06-02 | en_UK |
dc.citation.conferencelocation | Crete, Greece | en_UK |
dc.citation.conferencename | European Semantic Web Conference (ESWC) 2016 | en_UK |
dc.citation.date | 14/05/2016 | en_UK |
dc.citation.isbn | 9783319341286 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | Leibniz Institute for Social Sciences (GESIS) | en_UK |
dc.contributor.affiliation | University of Southern California | en_UK |
dc.contributor.affiliation | Leibniz Information Centre for Economics - ZBW | en_UK |
dc.identifier.scopusid | 2-s2.0-84979017533 | en_UK |
dc.identifier.wtid | 1007438 | en_UK |
dc.contributor.orcid | 0000-0002-2653-9245 | en_UK |
dc.date.accepted | 2016-02-22 | en_UK |
dcterms.dateAccepted | 2016-02-22 | en_UK |
dc.date.filedepositdate | 2018-10-18 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Schaible, Johann| | en_UK |
local.rioxx.author | Szekely, Pedro| | en_UK |
local.rioxx.author | Scherp, Ansgar|0000-0002-2653-9245 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Sack, H| | en_UK |
local.rioxx.contributor | Blomqvist, E| | en_UK |
local.rioxx.contributor | d'Aquin, M| | en_UK |
local.rioxx.contributor | Ghidini, C| | en_UK |
local.rioxx.contributor | Paolo Ponzetto, S| | en_UK |
local.rioxx.contributor | Lange, C| | en_UK |
local.rioxx.freetoreaddate | 2266-04-15 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Schaible et al 2016.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 9783319341286 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Schaible et al 2016.pdf | Fulltext - Published Version | 1.03 MB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.