Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/28428
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andreis, Federico | en_UK |
dc.contributor.author | Furfaro, Emanuela | en_UK |
dc.contributor.author | Mecatti, Fulvia | en_UK |
dc.contributor.editor | Perna, C | en_UK |
dc.contributor.editor | Pratesi, M | en_UK |
dc.contributor.editor | Ruiz-Gazen, A | en_UK |
dc.date.accessioned | 2018-12-20T01:00:24Z | - |
dc.date.available | 2018-12-20T01:00:24Z | - |
dc.date.issued | 2018-12-31 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/28428 | - |
dc.description.abstract | Sampling a rare and clustered trait in a finite population is challenging: traditional sampling designs usually require a large sample size in order to obtain reasonably accurate estimates, resulting in a considerable investment of resources in front of the detection of a small number of cases. A notable example is the case of WHO’s tuberculosis (TB) prevalence surveys, crucial for countries that bear a high TB burden, the prevalence of cases being still less than 1%. In the latest WHO guidelines, spatial patterns are not explicitly accounted for, with the risk of missing a large number of cases; moreover, cost and logistic constraints can pose further problems. After reviewing the methodology in use by WHO, the use of adaptive and sequential approaches is discussed as natural alternatives to improve over the limits of the current practice. A simulation study is presented to highlight possible advantages and limitations of these alternatives, and an integrated approach, combining both adaptive and sequential features in a single sampling strategy is advocated as a promising methodological perspective | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Andreis F, Furfaro E & Mecatti F (2018) Methodological perspectives for surveying rare and clustered population: towards a sequentially adaptive approach. In: Perna C, Pratesi M & Ruiz-Gazen A (eds.) Studies in Theoretical and Applied Statistics. SIS 2016. Springer Proceedings in Mathematics & Statistics, 227. 48th Scientific Meeting of the Italian Statistical Society, SIS 2016, Salerno, Italy, 08.06.2016-10.06.2016. Cham, Switzerland: Springer, pp. 15-24. https://doi.org/10.1007/978-3-319-73906-9_2 | en_UK |
dc.relation.ispartofseries | Springer Proceedings in Mathematics & Statistics, 227 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Spatial pattern | en_UK |
dc.subject | Prevalence surveys | en_UK |
dc.subject | logistic constraints | en_UK |
dc.subject | Poisson sampling | en_UK |
dc.subject | Horvitz-Thompson estimation | en_UK |
dc.title | Methodological perspectives for surveying rare and clustered population: towards a sequentially adaptive approach | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [A3_Methodological.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/978-3-319-73906-9_2 | en_UK |
dc.citation.issn | 2194-1009 | en_UK |
dc.citation.spage | 15 | en_UK |
dc.citation.epage | 24 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | federico.andreis@stir.ac.uk | en_UK |
dc.citation.btitle | Studies in Theoretical and Applied Statistics. SIS 2016 | en_UK |
dc.citation.conferencedates | 2016-06-08 - 2016-06-10 | en_UK |
dc.citation.conferencelocation | Salerno, Italy | en_UK |
dc.citation.conferencename | 48th Scientific Meeting of the Italian Statistical Society, SIS 2016 | en_UK |
dc.citation.date | 02/04/2018 | en_UK |
dc.citation.isbn | 978-331973905-2 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | Universita Commerciale 'Luigi Bocconi'. | en_UK |
dc.contributor.affiliation | University of Milano Bicocca | en_UK |
dc.contributor.affiliation | University of Milano Bicocca | en_UK |
dc.identifier.scopusid | 2-s2.0-85045297335 | en_UK |
dc.identifier.wtid | 1077547 | en_UK |
dc.contributor.orcid | 0000-0002-1776-3755 | en_UK |
dc.date.accepted | 2018-04-02 | en_UK |
dcterms.dateAccepted | 2018-04-02 | en_UK |
dc.date.filedepositdate | 2018-12-19 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Andreis, Federico|0000-0002-1776-3755 | en_UK |
local.rioxx.author | Furfaro, Emanuela| | en_UK |
local.rioxx.author | Mecatti, Fulvia| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Perna, C| | en_UK |
local.rioxx.contributor | Pratesi, M| | en_UK |
local.rioxx.contributor | Ruiz-Gazen, A| | en_UK |
local.rioxx.freetoreaddate | 2268-03-03 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | A3_Methodological.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-331973905-2 | en_UK |
Appears in Collections: | Faculty of Health Sciences and Sport Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A3_Methodological.pdf | Fulltext - Published Version | 611.12 kB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.