Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZamuda, Alešen_UK
dc.contributor.authorCrescimanna, Vincenzoen_UK
dc.contributor.authorBurguillo, Juan C.en_UK
dc.contributor.authorMatos Dias, Joanaen_UK
dc.contributor.authorWegrzyn-Wolska, Katarzynaen_UK
dc.contributor.authorRached, Imenen_UK
dc.contributor.authorGonzález-Vélez, Horacioen_UK
dc.contributor.authorSenkerik, Romanen_UK
dc.contributor.authorPop, Claudiaen_UK
dc.contributor.authorCioara, Tudoren_UK
dc.contributor.authorSalomie, Ioanen_UK
dc.contributor.authorBracciali, Andreaen_UK
dc.contributor.editorKołodziej, Jen_UK
dc.contributor.editorGonzález-Vélez, Hen_UK
dc.date.accessioned2019-05-03T00:00:18Z-
dc.date.available2019-05-03T00:00:18Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29405-
dc.description.abstractThis chapter surveys the state-of-the-art in forecasting cryptocurrency value by Sentiment Analysis. Key compounding perspectives of current challenges are addressed, including blockchains, data collection, annotation, and filtering, and sentiment analysis metrics using data streams and cloud platforms. We have explored the domain based on this problem-solving metric perspective, i.e., as technical analysis, forecasting, and estimation using a standardized ledger-based technology. The envisioned tools based on forecasting are then suggested, i.e., ranking Initial Coin Offering (ICO) values for incoming cryptocurrencies, trading strategies employing the new Sentiment Analysis metrics, and risk aversion in cryptocurrencies trading through a multi-objective portfolio selection. Our perspective is rationalized on the perspective on elastic demand of computational resources for cloud infrastructures.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationZamuda A, Crescimanna V, Burguillo JC, Matos Dias J, Wegrzyn-Wolska K, Rached I, González-Vélez H, Senkerik R, Pop C, Cioara T, Salomie I & Bracciali A (2019) Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the State-of-the-Art in the Cloud Era. In: Kołodziej J & González-Vélez H (eds.) High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer Science, 11400. ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet), Vilnius, Lithuania, 28.03.2019-29.03.2019. Cham, Switzerland: Springer, pp. 325-349. https://doi.org/10.1007/978-3-030-16272-6_12en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11400en_UK
dc.rightsThis chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectcryptocurrencyen_UK
dc.subjectblockchainen_UK
dc.subjectsentiment analysisen_UK
dc.subjectforecastingen_UK
dc.subjectICOen_UK
dc.subjectCSAIen_UK
dc.subjectcloud computingen_UK
dc.titleForecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the State-of-the-Art in the Cloud Eraen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-16272-6_12en_UK
dc.citation.jtitleTarget Identification and Validation in Drug Discovery; Methods in Molecular Biologyen_UK
dc.citation.issn1940-6029en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage325en_UK
dc.citation.epage349en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.citation.btitleHigh-Performance Modelling and Simulation for Big Data Applicationsen_UK
dc.citation.conferencedates2019-03-28 - 2019-03-29en_UK
dc.citation.conferencelocationVilnius, Lithuaniaen_UK
dc.citation.conferencenameICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)en_UK
dc.citation.date26/03/2019en_UK
dc.citation.isbn978-3-030-16271-9en_UK
dc.citation.isbn978-3-030-16272-6en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Mariboren_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Vigoen_UK
dc.contributor.affiliationUniversity of Coimbraen_UK
dc.contributor.affiliationEfrei Parisen_UK
dc.contributor.affiliationEfrei Parisen_UK
dc.contributor.affiliationNational College of Irelanden_UK
dc.contributor.affiliationTomas Bata University In Zlinen_UK
dc.contributor.affiliationTechnical University of Cluj-Napocaen_UK
dc.contributor.affiliationTechnical University of Cluj-Napocaen_UK
dc.contributor.affiliationTechnical University of Cluj-Napocaen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85063781134en_UK
dc.identifier.wtid1275014en_UK
dc.contributor.orcid0000-0002-3340-5624en_UK
dc.contributor.orcid0000-0001-9869-7448en_UK
dc.contributor.orcid0000-0003-2517-7905en_UK
dc.contributor.orcid0000-0002-9776-3842en_UK
dc.contributor.orcid0000-0002-6187-5092en_UK
dc.contributor.orcid0000-0003-0241-6053en_UK
dc.contributor.orcid0000-0002-5839-4263en_UK
dc.contributor.orcid0000-0002-4886-3572en_UK
dc.contributor.orcid0000-0003-1177-5795en_UK
dc.contributor.orcid0000-0002-7437-8300en_UK
dc.contributor.orcid0000-0003-1451-9260en_UK
dc.date.accepted2019-03-26en_UK
dcterms.dateAccepted2019-03-26en_UK
dc.date.filedepositdate2019-04-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorZamuda, Aleš|0000-0002-3340-5624en_UK
local.rioxx.authorCrescimanna, Vincenzo|en_UK
local.rioxx.authorBurguillo, Juan C.|0000-0001-9869-7448en_UK
local.rioxx.authorMatos Dias, Joana|0000-0003-2517-7905en_UK
local.rioxx.authorWegrzyn-Wolska, Katarzyna|0000-0002-9776-3842en_UK
local.rioxx.authorRached, Imen|0000-0002-6187-5092en_UK
local.rioxx.authorGonzález-Vélez, Horacio|0000-0003-0241-6053en_UK
local.rioxx.authorSenkerik, Roman|0000-0002-5839-4263en_UK
local.rioxx.authorPop, Claudia|0000-0002-4886-3572en_UK
local.rioxx.authorCioara, Tudor|0000-0003-1177-5795en_UK
local.rioxx.authorSalomie, Ioan|0000-0002-7437-8300en_UK
local.rioxx.authorBracciali, Andrea|0000-0003-1451-9260en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.contributorKołodziej, J|en_UK
local.rioxx.contributorGonzález-Vélez, H|en_UK
local.rioxx.freetoreaddate2019-04-29en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2019-04-29|en_UK
local.rioxx.filenameZamuda et al-2019-chapter.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-16272-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Zamuda et al-2019-chapter.pdfFulltext - Published Version382.63 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.