Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29411
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGrelck, Clemensen_UK
dc.contributor.authorNiewiadomska-Szynkiewicz, Ewaen_UK
dc.contributor.authorAldinucci, Marcoen_UK
dc.contributor.authorBracciali, Andreaen_UK
dc.contributor.authorLarsson, Elisabethen_UK
dc.contributor.editorKołodziej, Jen_UK
dc.contributor.editorGonzález-Vélez, Hen_UK
dc.date.accessioned2019-05-03T00:01:58Z-
dc.date.available2019-05-03T00:01:58Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29411-
dc.description.abstractModelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationGrelck C, Niewiadomska-Szynkiewicz E, Aldinucci M, Bracciali A & Larsson E (2019) Why High-Performance Modelling and Simulation for Big Data Applications Matters. In: Kołodziej J & González-Vélez H (eds.) High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer Science, 11400. ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet), Vilnius, Lithuania, 28.03.2019-29.03.2019. Cham, Switzerland: Springer, pp. 1-35. https://doi.org/10.1007/978-3-030-16272-6_1en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11400en_UK
dc.rightsThis chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectartificial intelligenceen_UK
dc.subjectbig dataen_UK
dc.subjectbig datumen_UK
dc.subjectbioinformaticsen_UK
dc.subjectcloud computingen_UK
dc.subjectcomputer architectureen_UK
dc.subjectcomputer systemsen_UK
dc.subjecthealth informaticsen_UK
dc.subjecthigh-performance computingen_UK
dc.subjecthpcen_UK
dc.subjectMapReduceen_UK
dc.subjectprocessorsen_UK
dc.subjectsensorsen_UK
dc.subjectwireless networksen_UK
dc.subjectwireless telecommunication systemsen_UK
dc.titleWhy High-Performance Modelling and Simulation for Big Data Applications Mattersen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-16272-6_1en_UK
dc.citation.jtitleTarget Identification and Validation in Drug Discovery; Methods in Molecular Biologyen_UK
dc.citation.issn1940-6029en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage1en_UK
dc.citation.epage35en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.citation.btitleHigh-Performance Modelling and Simulation for Big Data Applicationsen_UK
dc.citation.conferencedates2019-03-28 - 2019-03-29en_UK
dc.citation.conferencelocationVilnius, Lithuaniaen_UK
dc.citation.conferencenameICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)en_UK
dc.citation.date26/03/2019en_UK
dc.citation.isbn978-3-030-16271-9en_UK
dc.citation.isbn978-3-030-16272-6en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Amsterdamen_UK
dc.contributor.affiliationWarsaw University of Technologyen_UK
dc.contributor.affiliationUniversity of Turinen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUppsala Universityen_UK
dc.identifier.scopusid2-s2.0-85063773892en_UK
dc.identifier.wtid1274957en_UK
dc.contributor.orcid0000-0003-3003-1388en_UK
dc.contributor.orcid0000-0003-4782-3816en_UK
dc.contributor.orcid0000-0001-8788-0829en_UK
dc.contributor.orcid0000-0003-1451-9260en_UK
dc.contributor.orcid0000-0003-1154-9587en_UK
dc.date.accepted2019-03-26en_UK
dcterms.dateAccepted2019-03-26en_UK
dc.date.filedepositdate2019-04-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGrelck, Clemens|0000-0003-3003-1388en_UK
local.rioxx.authorNiewiadomska-Szynkiewicz, Ewa|0000-0003-4782-3816en_UK
local.rioxx.authorAldinucci, Marco|0000-0001-8788-0829en_UK
local.rioxx.authorBracciali, Andrea|0000-0003-1451-9260en_UK
local.rioxx.authorLarsson, Elisabeth|0000-0003-1154-9587en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.contributorKołodziej, J|en_UK
local.rioxx.contributorGonzález-Vélez, H|en_UK
local.rioxx.freetoreaddate2019-04-29en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2019-04-29|en_UK
local.rioxx.filenameGrelck et al-2019-chapter.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-16272-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Grelck et al-2019-chapter.pdfFulltext - Published Version412.92 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.