Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30024
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChávez, Edgaren_UK
dc.contributor.authorConnor, Richarden_UK
dc.contributor.authorVadicamo, Luciaen_UK
dc.date.accessioned2019-08-23T10:00:23Z-
dc.date.available2019-08-23T10:00:23Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30024-
dc.description.abstractThe concept of local pivoting is to partition a metric space so that each element in the space is associated with precisely one of a fixed set of reference objects or pivots. The idea is that each object of the data set is associated with the reference object that is best suited to filter that particular object if it is not relevant to a query, maximising the probability of excluding it from a search. The notion does not in itself lead to a scalable search mechanism, but instead gives a good chance of exclusion based on a tiny memory footprint and a fast calculation. It is therefore most useful in contexts where main memory is at a premium, or in conjunction with another, scalable, mechanism. In this paper we apply similar reasoning to metric spaces which possess the four-point property, which notably include Euclidean, Cosine, Triangular, Jensen-Shannon, and Quadratic Form. In this case, each element of the space can be associated with two reference objects, and a four-point lower-bound property is used instead of the simple triangle inequality. The probability of exclusion is strictly greater than with simple local pivoting; the space required per object and the calculation are again tiny in relative terms. We show that the resulting mechanism can be very effective. A consequence of using the four-point property is that, for m reference points, there arèarè m 2 ´ pivot pairs to choose from, giving a very good chance of a good selection being available from a small number of distance calculations. Finding the best pair has a quadratic cost with the number of references ; however, we provide experimental evidence that good heuristics exist. Finally, we show how the resulting mechanism can be integrated with a more scalable technique to provide a very significant performance improvement, for a very small overhead in build-time and memory cost. Keywords: metric search · extreme pivoting · supermetric space · four-point property · pivot based index 2 Chávez et al.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationChávez E, Connor R & Vadicamo L (2019) Query Filtering with Low-Dimensional Local Embeddings. In: SISAP 2019: Similarity Search and Applications. Lecture Notes in Computer Science, 11807. SISAP2019: International Conference on Similarity Search and Applications, Newark NJ, USA, 02.10.2019-04.10.2019. Cham, Switzerland: Springer, pp. 233-246. https://doi.org/10.1007/978-3-030-32047-8_21en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11807en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Amato G., Gennaro C., Oria V., Radovanović M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science, vol 11807. Springer, Cham. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-32047-8_21en_UK
dc.subjectmetric searchen_UK
dc.subjectextreme pivotingen_UK
dc.subjectsupermetric spaceen_UK
dc.subjectfour-point propertyen_UK
dc.subjectpivot based indexen_UK
dc.titleQuery Filtering with Low-Dimensional Local Embeddingsen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2019-09-23en_UK
dc.identifier.doi10.1007/978-3-030-32047-8_21en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage233en_UK
dc.citation.epage246en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailrichard.connor@stir.ac.uken_UK
dc.citation.btitleSISAP 2019: Similarity Search and Applicationsen_UK
dc.citation.conferencedates2019-10-02 - 2019-10-04en_UK
dc.citation.conferencelocationNewark NJ, USAen_UK
dc.citation.conferencenameSISAP2019: International Conference on Similarity Search and Applicationsen_UK
dc.citation.date23/09/2019en_UK
dc.citation.isbn978-3-030-32046-1en_UK
dc.citation.isbn978-3-030-32047-8en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationCentro de Investigación Científica y de Educación Superior de Ensenada (CICESEen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationVisual Computing Group, CNR-ISTIen_UK
dc.identifier.isiWOS:000616391700021en_UK
dc.identifier.scopusid2-s2.0-85076097267en_UK
dc.identifier.wtid1430107en_UK
dc.contributor.orcid0000-0003-4734-8103en_UK
dc.date.accepted2019-07-02en_UK
dcterms.dateAccepted2019-07-02en_UK
dc.date.filedepositdate2019-08-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorChávez, Edgar|en_UK
local.rioxx.authorConnor, Richard|0000-0003-4734-8103en_UK
local.rioxx.authorVadicamo, Lucia|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2019-09-23en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-09-23en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-09-23|en_UK
local.rioxx.filenamesuperExtremePaper.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-32047-8en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
superExtremePaper.pdfFulltext - Accepted Version745.34 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.