Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30363
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPenatti, Otavio A Ben_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authordos Santos, Jefersson Aen_UK
dc.date.accessioned2019-10-30T01:00:41Z-
dc.date.available2019-10-30T01:00:41Z-
dc.date.issued2015-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30363-
dc.description.abstractIn this paper, we evaluate the generalization power of deep features (ConvNets) in two new scenarios: aerial and remote sensing image classification. We evaluate experimentally ConvNets trained for recognizing everyday objects for the classification of aerial and remote sensing images. ConvNets obtained the best results for aerial images, while for remote sensing, they performed well but were outperformed by low-level color descriptors, such as BIC. We also present a correlation analysis, showing the potential for combining/fusing different ConvNets with other descriptors or even for combining multiple ConvNets. A preliminary set of experiments fusing ConvNets obtains state-of-the-art results for the well-known UCMerced dataset.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationPenatti OAB, Nogueira K & dos Santos JA (2015) Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2015, Boston, MA, USA, 07.06.2015-12.06.2015. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/cvprw.2015.7301382en_UK
dc.rightsThis CVPR2015 workshop paper is the Open Access version, provided by the Computer Vision Foundation. The authoritative version of this paper is available in IEEE Xplore: https://doi.org/10.1109/CVPRW.2015.7301382en_UK
dc.subjectFeature extractionen_UK
dc.subjectImage color analysisen_UK
dc.subjectAccuracyen_UK
dc.subjectRemote sensingen_UK
dc.subjectVisualizationen_UK
dc.subjectCorrelationen_UK
dc.subjectHistogramsen_UK
dc.titleDo deep features generalize from everyday objects to remote sensing and aerial scenes domains?en_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/cvprw.2015.7301382en_UK
dc.citation.issn2160-7508en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.citation.btitle2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)en_UK
dc.citation.conferencedates2015-06-07 - 2015-06-12en_UK
dc.citation.conferencelocationBoston, MA, USAen_UK
dc.citation.conferencenameThe IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2015en_UK
dc.citation.date26/10/2015en_UK
dc.citation.isbn9781467367592en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.identifier.scopusid2-s2.0-84940417790en_UK
dc.identifier.wtid1469425en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.date.accepted2015-04-13en_UK
dcterms.dateAccepted2015-04-13en_UK
dc.date.filedepositdate2019-10-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorPenatti, Otavio A B|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authordos Santos, Jefersson A|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2019-10-29en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-10-29|en_UK
local.rioxx.filename10.1.1.883.8108.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781467367592en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
10.1.1.883.8108.pdfFulltext - Published Version2.91 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.