Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorDalla Mura, Mauroen_UK
dc.contributor.authorChanussot, Jocelynen_UK
dc.contributor.authorSchwartz, William Robsonen_UK
dc.contributor.authordos Santos, Jefersson Aen_UK
dc.date.accessioned2019-11-01T01:01:47Z-
dc.date.available2019-11-01T01:01:47Z-
dc.date.issued2016-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30394-
dc.description.abstractLand cover classification is a task that requires methods capable of learning high-level features while dealing with high volume of data. Overcoming these challenges, Convolutional Networks (ConvNets) can learn specific and adaptable features depending on the data while, at the same time, learn classifiers. In this work, we propose a novel technique to automatically perform pixel-wise land cover classification. To the best of our knowledge, there is no other work in the literature that perform pixel-wise semantic segmentation based on data-driven feature descriptors for high-resolution remote sensing images. The main idea is to exploit the power of ConvNet feature representations to learn how to semantically segment remote sensing images. First, our method learns each label in a pixel-wise manner by taking into account the spatial context of each pixel. In a predicting phase, the probability of a pixel belonging to a class is also estimated according to its spatial context and the learned patterns. We conducted a systematic evaluation of the proposed algorithm using two remote sensing datasets with very distinct properties. Our results show that the proposed algorithm provides improvements when compared to traditional and state-of-the-art methods that ranges from 5 to 15% in terms of accuracy.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationNogueira K, Dalla Mura M, Chanussot J, Schwartz WR & dos Santos JA (2016) Learning to semantically segment high-resolution remote sensing images. In: <i>2016 23rd International Conference on Pattern Recognition (ICPR) Proceedings</i>. 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 04.12.2016-08.12.2016. Piscataway, NJ: IEEE, pp. 3566-3571. https://doi.org/10.1109/icpr.2016.7900187en_UK
dc.rights© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectLand-cover Mappingen_UK
dc.subjectPixel-wise Classificationen_UK
dc.subjectSemantic Segmentationen_UK
dc.subjectDeep Learningen_UK
dc.subjectRemote Sensingen_UK
dc.subjectFeature Learningen_UK
dc.subjectHigh-resolution Imagesen_UK
dc.titleLearning to semantically segment high-resolution remote sensing imagesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/icpr.2016.7900187en_UK
dc.citation.spage3566en_UK
dc.citation.epage3571en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.citation.btitle2016 23rd International Conference on Pattern Recognition (ICPR) Proceedingsen_UK
dc.citation.conferencedates2016-12-04 - 2016-12-08en_UK
dc.citation.conferencelocationCancun, Mexicoen_UK
dc.citation.conferencename2016 23rd International Conference on Pattern Recognition (ICPR)en_UK
dc.citation.date24/04/2017en_UK
dc.citation.isbn978-1-5090-4848-9en_UK
dc.citation.isbn9781509048472en_UK
dc.publisher.addressPiscataway, NJen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationUniversite de Grenobleen_UK
dc.contributor.affiliationUniversite de Grenobleen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.identifier.scopusid2-s2.0-85019077911en_UK
dc.identifier.wtid1469459en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2016-07-13en_UK
dcterms.dateAccepted2016-07-13en_UK
dc.date.filedepositdate2019-10-31en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorDalla Mura, Mauro|en_UK
local.rioxx.authorChanussot, Jocelyn|en_UK
local.rioxx.authorSchwartz, William Robson|en_UK
local.rioxx.authordos Santos, Jefersson A|0000-0002-8889-1586en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2019-10-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-10-31|en_UK
local.rioxx.filenamepaper_2016_ICPR_Nogueira.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781509048472en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
paper_2016_ICPR_Nogueira.pdfFulltext - Accepted Version4.97 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.