Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31180
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Macfie, Malcolm J | - |
dc.date.accessioned | 2020-05-22T08:18:32Z | - |
dc.date.available | 2020-05-22T08:18:32Z | - |
dc.date.issued | 1988 | - |
dc.identifier.uri | http://hdl.handle.net/1893/31180 | - |
dc.description.abstract | Six macrocyclic (L1-L6) and ten non-cyclic (L7-L16) tetraaza ligands containing only secondary nitrogen atoms were synthesised and characterised. A further tetramine ligand (L17) with two primary and two secondary nitrogen atoms was obtained commercially. The stepwise protonation constants of all these ligands and the Cu(II) complex stability constants of all but three of the ligands (L10-L12) were determined by potentiometric titration. The Cu(II) complex formation enthalpies of L¬1¬-L9 and L13-L17 were determined using a batch microcalorimetric technique. The enthalpies of solution of L1-L17 were determined by isoperibolic calorimetry and the enthalpies of vaporisation of L1-L9, L16 and L17 determined using a custom built vapour pressure-weight loss apparatus. The data for the ligands L1-L17 and for a number of macrocyclic and noncyclic tetraaza and tetramine ligands with smaller macrocyclic and/or chelate ring sizes (L(I)-L(XVIII)) has been examined to determine the effect of increasing macrocyclic and/or chelate ring size on the thermodynamic properties described above, and to determine the thermodynamic origins of the macrocyclic effect, the observed increase in stability of a macrocyclic ligand relative to that of an analogous non-cyclic ligand, and to determine the effect of increasing ligand size on the macrocyclic effect. The enthalpy contribution to the macrocyclic effect has been shown to be equal to the difference between the hydration enthalpy of the free macrocyclic and non-cyclic ligands. Differences in complex hydration appear to be small. The entropy contribution appears to be due to the greater loss of conformational entropy of the non-cyclic ligand on copper complex formation. The magnitude of the macrocyclic effect appears to be independent of ligand size but is dependent on the non-cycllic ligand chosen as a model for the macrocyclic ligand. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | University of Stirling | en_GB |
dc.subject.lcsh | Ligands | en_GB |
dc.subject.lcsh | Macrocyclic compounds | en_GB |
dc.title | A thermodynamic study of large tetraaza ligands and their Cu (II) complexes | en_GB |
dc.type | Thesis or Dissertation | en_GB |
dc.type.qualificationlevel | Doctoral | en_GB |
dc.type.qualificationname | Doctor of Philosophy | en_GB |
Appears in Collections: | eTheses from Faculty of Natural Sciences legacy departments |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Macfie-Thesis.pdf | 6.02 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.