Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/32586
Appears in Collections: | Faculty of Health Sciences and Sport Journal Articles |
Peer Review Status: | Refereed |
Title: | Particulate matter in aerosols produced by two last generation electronic cigarettes: a comparison in a real-world environment |
Author(s): | Borgini, Allesandro Veronese, Chiara De Marco, Cinzia Boffi, Roberto Tittarelli, Andrea Bertoldi, Martina Fernández, Esteve Tigova, Olena Gallus, Silvano Lugo, Alessandra Gorini, Giuseppe Carreras, Giulia Lopez, Maria Jose Semple, Sean Dobson, Ruaraidh |
Keywords: | Electronic cigarette Second-hand aerosol exposure Particulate matter Particle number |
Issue Date: | 18-Apr-2021 |
Date Deposited: | 6-May-2021 |
Citation: | Borgini A, Veronese C, De Marco C, Boffi R, Tittarelli A, Bertoldi M, Fernández E, Tigova O, Gallus S, Lugo A, Gorini G, Carreras G, Lopez MJ, Semple S & Dobson R (2021) Particulate matter in aerosols produced by two last generation electronic cigarettes: a comparison in a real-world environment. Pulmonology. https://doi.org/10.1016/j.pulmoe.2021.03.005 |
Abstract: | The design of e-cigarettes (e-cigs) is constantly evolving and the latest models can aerosolize using high-power sub-ohm resistance and hence may produce specific particle concentrations. The aim of this study was to evaluate the aerosol characteristics generated by two different types of electronic cigarette in real-world conditions, such as a sitting room or a small office, in number of particles (particles/cm3). We compared the real time and time-integrated measurements of the aerosol generated by the e-cigarette types Just Fog and JUUL. Real time (10 s average) number of particles (particles/cm3) in 8 different aerodynamic sizes was measured using an optical particle counter (OPC) model Profiler 212-2. Tests were conducted with and without a Heating, Ventilating Air Conditioning System (HVACS) in operation, in order to evaluate the efficiency of air filtration. During the vaping sessions the OPC recorded quite significant increases in number of particles/cm3. The JUUL e-cig produced significantly lower emissions than Just Fog with and without the HVACS in operation. The study demonstrates the rapid volatility or change from liquid or semi-liquid to gaseous status of the e-cig aerosols, with half-life in the order of a few seconds (min. 4.6, max 23.9), even without the HVACS in operation. The e-cig aerosol generated by the JUUL proved significantly lower than that generated by the Just Fog, but this reduction may not be sufficient to eliminate or consistently reduce the health risk for vulnerable non e-cig users exposed to it. |
DOI Link: | 10.1016/j.pulmoe.2021.03.005 |
Rights: | © 2021 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
Notes: | Output Status: Forthcoming/Available Online Additional co-authors: X Continente, L Clancy, S Keogan, A Tzortzi, C Vardavas, Á López Nicolás, P Starchenko, J B Soriano, A A Ruprecht, TackSHS Project Investigators |
Licence URL(s): | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2531043721000799-main.pdf | Fulltext - Published Version | 730.11 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.