Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33484
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.authorWallace, Aidanen_UK
dc.contributor.authorCairns, Daviden_UK
dc.contributor.editorMartin, Kyleen_UK
dc.contributor.editorWiratunga, Nirmalieen_UK
dc.contributor.editorWijekoon, Anjanaen_UK
dc.date.accessioned2021-10-20T00:03:38Z-
dc.date.available2021-10-20T00:03:38Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33484-
dc.description.abstractMetaheuristics are randomised search algorithms that are effective at finding ”good enough” solutions to optimisation problems. However, they present no justification for the generated solutions, and are non-trivial to analyse. We propose that identifying which combinations of variables strongly influence solution quality, and the nature of that relationship, represents a step towards explaining the choices made by the algorithm. Here, we present an approach to mining this information from a “surrogate fitness function” within a metaheuristic. The approach is demonstrated with two simple examples and a real-world case study.en_UK
dc.language.isoenen_UK
dc.publisherCEUR Workshop Proceedingsen_UK
dc.relationBrownlee A, Wallace A & Cairns D (2021) Mining Markov Network Surrogates to Explain the Results of Metaheuristic Optimisation. In: Martin K, Wiratunga N & Wijekoon A (eds.) Proceedings of the SICSA eXplainable Artifical Intelligence Workshop 2021. CEUR Workshop Proceedings, 2894. SICSA eXplainable Artifical Intelligence Workshop 2021, Aberdeen, 01.06.2021-01.06.2021. Aachen: CEUR Workshop Proceedings, pp. 64-70. http://ceur-ws.org/Vol-2894/short9.pdfen_UK
dc.relation.ispartofseriesCEUR Workshop Proceedings, 2894en_UK
dc.rightsCopyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0 - https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectmetaheuristicsen_UK
dc.subjectsurrogatesen_UK
dc.subjectoptimisationen_UK
dc.subjectexplainabilityen_UK
dc.titleMining Markov Network Surrogates to Explain the Results of Metaheuristic Optimisationen_UK
dc.typeConference Paperen_UK
dc.citation.issn1613-0073en_UK
dc.citation.spage64en_UK
dc.citation.epage70en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://ceur-ws.org/Vol-2894/short9.pdfen_UK
dc.citation.btitleProceedings of the SICSA eXplainable Artifical Intelligence Workshop 2021en_UK
dc.citation.conferencedates2021-06-01 - 2021-06-01en_UK
dc.citation.conferencelocationAberdeenen_UK
dc.citation.conferencenameSICSA eXplainable Artifical Intelligence Workshop 2021en_UK
dc.publisher.addressAachenen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid1731942en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.contributor.orcid0000-0002-0246-3821en_UK
dc.date.accepted2021-05-12en_UK
dcterms.dateAccepted2021-05-12en_UK
dc.date.filedepositdate2021-10-18en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.authorWallace, Aidan|en_UK
local.rioxx.authorCairns, David|0000-0002-0246-3821en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorMartin, Kyle|en_UK
local.rioxx.contributorWiratunga, Nirmalie|en_UK
local.rioxx.contributorWijekoon, Anjana|en_UK
local.rioxx.freetoreaddate2021-10-19en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-10-19|en_UK
local.rioxx.filenameshort9.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1613-0073en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
short9.pdfFulltext - Published Version710.64 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.