Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33535
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWallace, Aidanen_UK
dc.contributor.authorBrownlee, Alexander E Ien_UK
dc.contributor.authorCairns, Daviden_UK
dc.contributor.editorBramer, Maxen_UK
dc.contributor.editorEllis, Richarden_UK
dc.date.accessioned2021-11-02T01:00:43Z-
dc.date.available2021-11-02T01:00:43Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33535-
dc.description.abstractMetaheuristics are randomised search algorithms that are effective at finding "good enough" solutions to optimisation problems. However, they present no justification for generated solutions and these solutions are non-trivial to analyse in most cases. We propose that identifying the combinations of variables that strongly influence solution quality, and the nature of this relationship, represents a step towards explaining the choices made by a metaheuristic. Using three benchmark problems, we present an approach to mining this information by using a "surrogate fitness function" within a metaheuristic. For each problem, rankings of the importance of each variable with respect to fitness are determined through sampling of the surrogate model. We show that two of the three surrogate models tested were able to generate variable rank-ings that agree with our understanding of variable importance rankings within the three common binary benchmark problems trialled.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationWallace A, Brownlee AEI & Cairns D (2021) Towards explaining metaheuristic solution quality by data mining surrogate fitness models for importance of variables. In: Bramer M & Ellis R (eds.) Artificial Intelligence XXXVIII. Lecture Notes in Computer Science, 13101. 41st SGAI International Conference on Artificial Intelligence, AI 2021, Cambridge, 14.12.2021-16.12.2021. Cham, Switzerland: Springer, pp. 58-72. https://doi.org/10.1007/978-3-030-91100-3_5en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 13101en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a post-peer-review, pre-copyedit version of an article published in Bramer M & Ellis R (eds.) Artificial Intelligence XXXVIII. Lecture Notes in Computer Science, 13101. 41st SGAI International Conference on Artificial Intelligence, AI 2021, Cambridge, 14.12.2021-16.12.2021. Cham, Switzerland: Springer. . The final authenticated version is available online at: http://www.springer.com/gp/book/9783030910990en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectMetaheuristicsen_UK
dc.subjectSurrogatesen_UK
dc.subjectOptimisationen_UK
dc.subjectExplainabilityen_UK
dc.titleTowards explaining metaheuristic solution quality by data mining surrogate fitness models for importance of variablesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2021-12-06en_UK
dc.rights.embargoreason[SGAI_2021_Paper_cameraready.pdf] Until this work is published there will be an embargo on the full text of this work.en_UK
dc.identifier.doi10.1007/978-3-030-91100-3_5en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage58en_UK
dc.citation.epage72en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.citation.btitleArtificial Intelligence XXXVIIIen_UK
dc.citation.conferencedates2021-12-14 - 2021-12-16en_UK
dc.citation.conferencelocationCambridgeen_UK
dc.citation.conferencename41st SGAI International Conference on Artificial Intelligence, AI 2021en_UK
dc.citation.date06/12/2021en_UK
dc.citation.isbn978-3-030-91099-0en_UK
dc.citation.isbn978-3-030-91100-3en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.identifier.wtid1768533en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.contributor.orcid0000-0002-0246-3821en_UK
dc.date.accepted2021-09-02en_UK
dcterms.dateAccepted2021-09-02en_UK
dc.date.filedepositdate2021-10-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorWallace, Aidan|en_UK
local.rioxx.authorBrownlee, Alexander E I|0000-0003-2892-5059en_UK
local.rioxx.authorCairns, David|0000-0002-0246-3821en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorBramer, Max|en_UK
local.rioxx.contributorEllis, Richard|en_UK
local.rioxx.freetoreaddate2021-12-06en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-12-06en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2021-12-06|en_UK
local.rioxx.filenameSGAI_2021_Paper_cameraready.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-91100-3en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
SGAI_2021_Paper_cameraready.pdfFulltext - Accepted Version329.96 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.