Please use this identifier to cite or link to this item:
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Recombination and Novelty in Neuroevolution: A Visual Analysis
Author(s): Sarti, Stefano
Adair, Jason
Ochoa, Gabriela
Keywords: Neuroevolution
Algorithm analysis
Complex networks
Search trajectory networks
Novelty search
Issue Date: May-2022
Date Deposited: 4-Apr-2022
Citation: Sarti S, Adair J & Ochoa G (2022) Recombination and Novelty in Neuroevolution: A Visual Analysis. SN Computer Science, 3 (3), Art. No.: 185.
Abstract: Neuroevolution has re-emerged as an active topic in the last few years. However, there is a lack of accessible tools to analyse, contrast and visualise the behaviour of neuroevolution systems. A variety of search strategies have been proposed such as Novelty search and Quality-Diversity search, but their impact on the evolutionary dynamics is not well understood. We propose using a data-driven, graph-based model, search trajectory networks (STNs) to analyse, visualise and directly contrast the behaviour of different neuroevolution search methods. Our analysis uses NEAT for solving maze problems with two search strategies: novelty-based and fitness-based, and including and excluding the crossover operator. We model and visualise the trajectories, contrasting and illuminating the behaviour of the studied neuroevolution variants. Our results confirm the advantages of novelty search in this setting, but challenge the usefulness of recombination.
DOI Link: 10.1007/s42979-022-01064-6
Rights: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
Licence URL(s):

Files in This Item:
File Description SizeFormat 
Sarti2022_Article_RecombinationAndNoveltyInNeuro.pdfFulltext - Published Version3.46 MBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.