Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34231
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Manjinderen_UK
dc.contributor.authorBrownlee, Alexander E Ien_UK
dc.contributor.authorCairns, Daviden_UK
dc.date.accessioned2022-04-30T00:02:25Z-
dc.date.available2022-04-30T00:02:25Z-
dc.date.issued2022en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34231-
dc.description.abstractMetaheuristic search algorithms look for solutions that either max-imise or minimise a set of objectives, such as cost or performance. However most real-world optimisation problems consist of nonlin-ear problems with complex constraints and conflicting objectives. The process by which a GA arrives at a solution remains largely unexplained to the end-user. A poorly understood solution will dent the confidence a user has in the arrived at solution. We propose that investigation of the variables that strongly influence solution quality and their relationship would be a step toward providing an explanation of the near-optimal solution presented by a meta-heuristic. Through the use of four benchmark problems we use the population data generated by a Genetic Algorithm (GA) to train a surrogate model, and investigate the learning of the search space by the surro-gate model. We compare what the surrogate has learned after being trained on population data generated after the first generation and contrast this with a surrogate model trained on the population data from all generations. We show that the surrogate model picks out key characteristics of the problem as it is trained on population data from each generation. Through mining the surrogate model we can build a picture of the learning process of a GA, and thus an explanation of the solution presented by the GA. The aim being to build trust and confidence in the end-user about the solution presented by the GA, and encourage adoption of the model. CCS CONCEPTS • Theory of computation → Models of learning; Theory of randomized search heuristics.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationSingh M, Brownlee AEI & Cairns D (2022) Towards Explainable Metaheuristic: Mining Surrogate Fitness Models for Importance of Variables. In: GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO '22:, Boston, USA, 09.07.2022-13.07.2022. New York: ACM, pp. 1785-1793. https://doi.org/10.1145/3520304.3533966en_UK
dc.rights© ACM, 2022. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference Companion, July 2022, Pages 1785–1793, https://doi.org/10.1145/3520304.3533966en_UK
dc.subjectgenetic algorithmsen_UK
dc.subjectexplainabilityen_UK
dc.subjectinterpretableen_UK
dc.subjectsurrogate modelen_UK
dc.subjectfitness functionen_UK
dc.subjectoptimizationen_UK
dc.titleTowards Explainable Metaheuristic: Mining Surrogate Fitness Models for Importance of Variablesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2022-07-31en_UK
dc.identifier.doi10.1145/3520304.3533966en_UK
dc.citation.spage1785en_UK
dc.citation.epage1793en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderDatalaben_UK
dc.author.emailmanjinder.singh1@stir.ac.uken_UK
dc.citation.btitleGECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference Companionen_UK
dc.citation.conferencedates2022-07-09 - 2022-07-13en_UK
dc.citation.conferencelocationBoston, USAen_UK
dc.citation.conferencenameGECCO '22:en_UK
dc.citation.isbn978-1-4503-9268-6en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid1812230en_UK
dc.contributor.orcid0000-0003-4720-3473en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.contributor.orcid0000-0002-0246-3821en_UK
dc.date.accepted2022-04-29en_UK
dcterms.dateAccepted2022-04-29en_UK
dc.date.filedepositdate2022-04-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSingh, Manjinder|0000-0003-4720-3473en_UK
local.rioxx.authorBrownlee, Alexander E I|0000-0003-2892-5059en_UK
local.rioxx.authorCairns, David|0000-0002-0246-3821en_UK
local.rioxx.projectProject ID unknown|Datalab|en_UK
local.rioxx.freetoreaddate2022-07-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2022-07-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2022-07-31|en_UK
local.rioxx.filenameSingh-etal-ACM-2022.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4503-9268-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Singh-etal-ACM-2022.pdfFulltext - Accepted Version1.35 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.