Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKorkusuz, Buraken_UK
dc.contributor.authorMcMillan, Daviden_UK
dc.contributor.authorKambouroudis, Dimosen_UK
dc.date.accessioned2022-07-27T00:00:55Z-
dc.date.available2022-07-27T00:00:55Z-
dc.date.issued2022-09-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34533-
dc.description.abstractThis paper analyses the dynamic transmission mechanism of volatility spillovers between key global financial indicators and G20 stock markets. To examine volatility spillover relations, we combine a bivariate GARCH-BEKK model with complex network theory. Specifically, we construct a volatility network of international financial markets utilising the spatial connectedness of spillovers (consisting of nodes and edges). The findings show that spillover relations between global variables and G20 markets varies significantly across five identified sub-periods. Notably, networks are much denser in crisis periods compared to non-crisis periods. In comparing two crisis periods, Global Financial Crisis (2008) and Covid-19 Crisis (2020) periods, the network statistics suggest that volatility spillovers in the latter period are more transitive and intense than the former. This suggests that financial volatility spreads more rapidly and directly through key financial indicators to the G20 stock markets. For example, oil and bonds are the largest volatility senders, while the markets of Saudi Arabia, Russia, South Africa, and Brazil are the main volatility receivers. In the former crisis, the source of financial volatility concentrates primarily in the US, Australia, Canada, and Saudi Arabia, which are the largest volatility senders and receivers. China emerges as generally the least sensitive market to external volatility.en_UK
dc.language.isoenen_UK
dc.publisherBMCen_UK
dc.relationKorkusuz B, McMillan D & Kambouroudis D (2022) Complex Network Analysis of Volatility Spillovers between Global Financial Indicators and G20 Stock Markets. <i>Empirical Economics</i>. https://doi.org/10.1007/s00181-022-02290-wen_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectVolatility spilloveren_UK
dc.subjectGARCH-BEKKen_UK
dc.subjectComplex network theoryen_UK
dc.subjectGlobal financial indicatorsen_UK
dc.subjectG20 stock marketsen_UK
dc.titleComplex Network Analysis of Volatility Spillovers between Global Financial Indicators and G20 Stock Marketsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2022-09-10en_UK
dc.identifier.doi10.1007/s00181-022-02290-wen_UK
dc.identifier.pmid36106329en_UK
dc.citation.jtitleEmpirical Economicsen_UK
dc.citation.issn1435-8921en_UK
dc.citation.issn0377-7332en_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emaildavid.mcmillan@stir.ac.uken_UK
dc.citation.date10/09/2022en_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.identifier.isiWOS:000852095800001en_UK
dc.identifier.scopusid2-s2.0-85137545139en_UK
dc.identifier.wtid1830533en_UK
dc.contributor.orcid0000-0002-5891-4193en_UK
dc.contributor.orcid0000-0002-8230-0028en_UK
dc.date.accepted2022-07-21en_UK
dcterms.dateAccepted2022-07-21en_UK
dc.date.filedepositdate2022-07-26en_UK
dc.subject.tagCOVID-19en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorKorkusuz, Burak|en_UK
local.rioxx.authorMcMillan, David|0000-0002-5891-4193en_UK
local.rioxx.authorKambouroudis, Dimos|0000-0002-8230-0028en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-09-10en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2022-09-10en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-09-10|en_UK
local.rioxx.filenames00181-022-02290-w.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1435-8921en_UK
Appears in Collections:Accounting and Finance Journal Articles

Files in This Item:
File Description SizeFormat 
s00181-022-02290-w.pdfFulltext - Published Version1.4 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.