Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34557
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThomson, Sarah Len_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorVerel, Sébastienen_UK
dc.contributor.editorRudolph, Günteren_UK
dc.contributor.editorKononova, Anna V.en_UK
dc.contributor.editorAguirre, Hernánen_UK
dc.contributor.editorKerschke, Pascalen_UK
dc.contributor.editorOchoa, Gabrielaen_UK
dc.contributor.editorTušar, Teaen_UK
dc.date.accessioned2022-09-21T00:01:47Z-
dc.date.available2022-09-21T00:01:47Z-
dc.date.issued2022en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34557-
dc.description.abstractWe study the effect of varying perturbation strength on the fractal dimensions of Quadratic Assignment Problem (QAP) fitness landscapes induced by iterated local search (ILS). Fitness landscapes are represented as Local Optima Networks (LONs), which are graphs mapping algorithm search connectivity in a landscape. LONs are constructed for QAP instances and fractal dimension measurements taken from the networks. Thereafter, the interplay between perturbation strength, LON fractal dimension, and algorithm difficulty on the underlying combina-torial problems is analysed. The results show that higher-perturbation LONs also have higher fractal dimensions. ILS algorithm performance prediction using fractal dimension features may benefit more from LONs formed using a high perturbation strength; this model configuration enjoyed excellent performance. Around half of variance in Robust Taboo Search performance on the data-set used could be explained with the aid of fractal dimension features.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationThomson SL, Ochoa G & Verel S (2022) Fractal Dimension and Perturbation Strength: A Local Optima Networks View. In: Parallel Problem Solving from Nature. Lecture Notes in Computer Science, 13398. Parallel Problem Solving from Nature – PPSN XVII 17th International Conference, PPSN 2022, Dortmund, Germany, 10.09.2022-14.09.2022. Cham, Switzerland: Springer, pp. 562-574. https://doi.org/10.1007/978-3-031-14714-2_39en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 13398en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a post-peer-review, pre-copyedit version of a paper published in Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham, pp. 532-574. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-14714-2_39en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectLocal Optima Networken_UK
dc.subjectFractal Dimensionen_UK
dc.subjectQuadratic Assignment Problemen_UK
dc.subjectQAPen_UK
dc.subjectIterated Local Searchen_UK
dc.subjectPerturbation Strengthen_UK
dc.subjectFitness Land- scapesen_UK
dc.titleFractal Dimension and Perturbation Strength: A Local Optima Networks Viewen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2023-08-15en_UK
dc.rights.embargoreason[ppsn.pdf] Publisher requires embargo of 12 months after publication.en_UK
dc.identifier.doi10.1007/978-3-031-14714-2_39en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage562en_UK
dc.citation.epage574en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emails.l.thomson@stir.ac.uken_UK
dc.citation.btitleParallel Problem Solving from Natureen_UK
dc.citation.conferencedates2022-09-10 - 2022-09-14en_UK
dc.citation.conferencelocationDortmund, Germanyen_UK
dc.citation.conferencenameParallel Problem Solving from Nature – PPSN XVII 17th International Conference, PPSN 2022en_UK
dc.citation.date14/08/2022en_UK
dc.citation.isbn978-3-031-14713-5en_UK
dc.citation.isbn978-3-031-14714-2en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Littoral Côte d'Opaleen_UK
dc.identifier.scopusid2-s2.0-85136940451en_UK
dc.identifier.wtid1824449en_UK
dc.contributor.orcid0000-0001-6971-7817en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2022-06-06en_UK
dcterms.dateAccepted2022-06-06en_UK
dc.date.filedepositdate2022-09-16en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorThomson, Sarah L|0000-0001-6971-7817en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorVerel, Sébastien|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorRudolph, Günter|en_UK
local.rioxx.contributorKononova, Anna V.|en_UK
local.rioxx.contributorAguirre, Hernán|en_UK
local.rioxx.contributorKerschke, Pascal|en_UK
local.rioxx.contributorOchoa, Gabriela|en_UK
local.rioxx.contributorTušar, Tea|en_UK
local.rioxx.freetoreaddate2023-08-15en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2023-08-14en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2023-08-15|en_UK
local.rioxx.filenameppsn.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-031-14714-2en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
ppsn.pdfFulltext - Accepted Version3.72 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.