Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35091
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcMillan, Daviden_UK
dc.contributor.authorKambouroudis, Dimosen_UK
dc.contributor.authorSahiner, Mehmeten_UK
dc.date.accessioned2023-05-23T00:01:28Z-
dc.date.available2023-05-23T00:01:28Z-
dc.identifier.urihttp://hdl.handle.net/1893/35091-
dc.description.abstractThis paper enters the ongoing volatility forecasting debate by examining the ability of a wide range of Machine Learning methods (ML), and specifically Artificial Neural Network (ANN) models. The ANN models are compared against traditional econometric models for ten Asian markets using daily data for the time period from 12 September 1994 to 05 March 2018. The empirical results indicate that ML algorithms, across the range of countries, can better approximate dependencies compared to traditional benchmark models. Notably, the predictive performance of such deep learning models is superior perhaps due to its ability in capturing long-range dependencies. For example, the Neuro Fuzzy models of ANFIS and CANFIS, which outperform the EGARCH model, are more flexible in modelling both asymmetry and long memory properties. This offers new insights for Asian markets. In addition to standard statistics forecast metrics, we also consider risk management measures including the value-at-risk (VaR) average failure rate, the Kupiec LR test, the Christoffersen independence test, the expected shortfall (ES) and the dynamic quantile test. The study concludes that ML algorithms provide improving volatility forecasts in the stock markets of Asia and suggest that this may be a fruitful approach for risk management.en_UK
dc.language.isoenen_UK
dc.publisherBMCen_UK
dc.relationMcMillan D, Kambouroudis D & Sahiner M (2023) Do Artificial Neural Networks Provide Improved Volatility Forecasts: Evidence from Asian Markets. <i>Journal of Economics and Finance</i>.en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.subjectVolatilityen_UK
dc.subjectForecastingen_UK
dc.subjectNeural Networksen_UK
dc.subjectMachine Learningen_UK
dc.subjectVaRen_UK
dc.subjectESen_UK
dc.titleDo Artificial Neural Networks Provide Improved Volatility Forecasts: Evidence from Asian Marketsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2026-04-29en_UK
dc.rights.embargoreason[ANN_ Final.pdf] Publisher requires embargo of 12 months after publication.en_UK
dc.citation.jtitleJournal of Economics and Financeen_UK
dc.citation.issn1938-9744en_UK
dc.citation.issn1055-0925en_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildavid.mcmillan@stir.ac.uken_UK
dc.description.notesOutput Status: Forthcomingen_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationNottingham Trent Universityen_UK
dc.identifier.wtid1902558en_UK
dc.contributor.orcid0000-0002-5891-4193en_UK
dc.contributor.orcid0000-0002-8230-0028en_UK
dc.date.accepted2023-04-29en_UK
dcterms.dateAccepted2023-04-29en_UK
dc.date.filedepositdate2023-05-10en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMcMillan, David|0000-0002-5891-4193en_UK
local.rioxx.authorKambouroudis, Dimos|0000-0002-8230-0028en_UK
local.rioxx.authorSahiner, Mehmet|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2026-04-29en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2026-04-28en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2026-04-29|en_UK
local.rioxx.filenameANN_ Final.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1938-9744en_UK
Appears in Collections:Accounting and Finance Journal Articles

Files in This Item:
File Description SizeFormat 
ANN_ Final.pdfFulltext - Accepted Version1.07 MBAdobe PDFUnder Embargo until 2026-04-29    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.