Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36277
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCan, Burcuen_UK
dc.contributor.authorAleçakır, Hüseyinen_UK
dc.contributor.authorManandhar, Sureshen_UK
dc.contributor.authorBozşahin, Cemen_UK
dc.date.accessioned2024-10-04T00:02:29Z-
dc.date.available2024-10-04T00:02:29Z-
dc.date.issued2022-11en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36277-
dc.description.abstractWe propose an integrated deep learning model for morphological segmentation, morpheme tagging, part-of-speech (POS) tagging, and syntactic parsing onto dependencies, using cross-level contextual information flow for every word, from segments to dependencies, with an attention mechanism at horizontal flow. Our model extends the work of Nguyen and Verspoor (2018) on joint POS tagging and dependency parsing to also include morphological segmentation and morphological tagging. We report our results on several languages. Primary focus is agglutination in morphology, in particular Turkish morphology, for which we demonstrate improved performance compared to models trained for individual tasks. Being one of the earlier efforts in joint modeling of syntax and morphology along with dependencies, we discuss prospective guidelines for future comparison.en_UK
dc.language.isoenen_UK
dc.publisherCambridge University Press (CUP)en_UK
dc.relationCan B, Aleçakır H, Manandhar S & Bozşahin C (2022) Joint learning of morphology and syntax with cross-level contextual information flow. <i>Natural Language Engineering</i>, 28 (6), pp. 763-795. https://doi.org/10.1017/s1351324921000371en_UK
dc.rights© The Author(s), 2022. Published by Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectMorphologyen_UK
dc.subjectSyntaxen_UK
dc.subjectDependency parsingen_UK
dc.subjectMorphological taggingen_UK
dc.subjectMorphological segmentationen_UK
dc.subjectRecurrent neural networksen_UK
dc.subjectAttentionen_UK
dc.titleJoint learning of morphology and syntax with cross-level contextual information flowen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1017/s1351324921000371en_UK
dc.citation.jtitleNatural Language Engineeringen_UK
dc.citation.issn1469-8110en_UK
dc.citation.issn1351-3249en_UK
dc.citation.volume28en_UK
dc.citation.issue6en_UK
dc.citation.spage763en_UK
dc.citation.epage795en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailburcu.can@stir.ac.uken_UK
dc.citation.date20/01/2022en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationMiddle East Technical Universityen_UK
dc.contributor.affiliationMadan Bhandari University of Science and Technologyen_UK
dc.contributor.affiliationMiddle East Technical Universityen_UK
dc.identifier.isiWOS:000744747700001en_UK
dc.identifier.scopusid2-s2.0-85124208997en_UK
dc.identifier.wtid1873513en_UK
dc.contributor.orcid0000-0002-1700-0395en_UK
dc.date.accepted2021-08-08en_UK
dcterms.dateAccepted2021-08-08en_UK
dc.date.filedepositdate2024-07-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorCan, Burcu|0000-0002-1700-0395en_UK
local.rioxx.authorAleçakır, Hüseyin|en_UK
local.rioxx.authorManandhar, Suresh|en_UK
local.rioxx.authorBozşahin, Cem|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-09-26en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-09-26|en_UK
local.rioxx.filenamejoint-learning-of-morphology-and-syntax-with-cross-level-contextual-information-flow.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1469-8110en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
joint-learning-of-morphology-and-syntax-with-cross-level-contextual-information-flow.pdfFulltext - Published Version1.88 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.