Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36283
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhou, Ryanen_UK
dc.contributor.authorBacardit, Jaumeen_UK
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.authorCagnoni, Stefanoen_UK
dc.contributor.authorFyvie, Martinen_UK
dc.contributor.authorIacca, Giovannien_UK
dc.contributor.authorMcCall, Johnen_UK
dc.contributor.authorvan Stein, Nikien_UK
dc.contributor.authorWalker, Daviden_UK
dc.contributor.authorHu, Tingen_UK
dc.date.accessioned2024-10-08T00:01:25Z-
dc.date.available2024-10-08T00:01:25Z-
dc.identifier.urihttp://hdl.handle.net/1893/36283-
dc.description.abstractAI methods are finding an increasing number of applications, but their often black-box nature has raised concerns about accountability and trust. The field of explainable artificial intelligence (XAI) has emerged in response to the need for human understanding of AI models. Evolutionary computation (EC), as a family of powerful optimization and learning tools, has significant potential to contribute to XAI. In this paper, we provide an introduction to XAI and review various techniques in current use for explaining machine learning (ML) models. We then focus on how EC can be used in XAI, and review some XAI approaches which incorporate EC techniques. Additionally, we discuss the application of XAI principles within EC itself, examining how these principles can shed some light on the behavior and outcomes of EC algorithms in general, on the (automatic) configuration of these algorithms, and on the underlying problem landscapes that these algorithms optimize. Finally, we discuss some open challenges in XAI and opportunities for future research in this field using EC. Our aim is to demonstrate that EC is well-suited for addressing current problems in explainability and to encourage further exploration of these methods to contribute to the development of more transparent and trustworthy ML models and EC algorithms.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineersen_UK
dc.relationZhou R, Bacardit J, Brownlee A, Cagnoni S, Fyvie M, Iacca G, McCall J, van Stein N, Walker D & Hu T (2024) Evolutionary Computation and Explainable AI: A Roadmap to Transparent Intelligent Systems. <i>IEEE Transactions on Evolutionary Computation</i>.en_UK
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectExplainabilityen_UK
dc.subjectInterpretabilityen_UK
dc.subjectEvolutionary Computationen_UK
dc.subjectMachine Learningen_UK
dc.titleEvolutionary Computation and Explainable AI: A Roadmap to Transparent Intelligent Systemsen_UK
dc.typeJournal Articleen_UK
dc.citation.jtitleIEEE Transactions on Evolutionary Computationen_UK
dc.citation.issn1941-0026en_UK
dc.citation.issn1089-778Xen_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.description.notesOutput Status: Forthcomingen_UK
dc.contributor.affiliationQueen's University, Ontarioen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationUniversity of Parmaen_UK
dc.contributor.affiliationRobert Gordon Universityen_UK
dc.contributor.affiliationTrento Universityen_UK
dc.contributor.affiliationRobert Gordon Universityen_UK
dc.contributor.affiliationLeiden Universityen_UK
dc.contributor.affiliationUniversity of Exeteren_UK
dc.contributor.affiliationQueen's University, Ontarioen_UK
dc.identifier.wtid2051482en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.date.accepted2024-09-29en_UK
dcterms.dateAccepted2024-09-29en_UK
dc.date.filedepositdate2024-09-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorZhou, Ryan|en_UK
local.rioxx.authorBacardit, Jaume|en_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.authorCagnoni, Stefano|en_UK
local.rioxx.authorFyvie, Martin|en_UK
local.rioxx.authorIacca, Giovanni|en_UK
local.rioxx.authorMcCall, John|en_UK
local.rioxx.authorvan Stein, Niki|en_UK
local.rioxx.authorWalker, David|en_UK
local.rioxx.authorHu, Ting|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-10-07en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2024-10-07|en_UK
local.rioxx.filenameECXAI_Review__IEEE_Format_R1.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1941-0026en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
ECXAI_Review__IEEE_Format_R1.pdfFulltext - Accepted Version1.01 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.