Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36289
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtif, Ayeshaen_UK
dc.contributor.authorZafar, Amnaen_UK
dc.contributor.authorWasim, Muhammaden_UK
dc.contributor.authorWaheed, Talhaen_UK
dc.contributor.authorAli, Amjaden_UK
dc.contributor.authorAli, Hazraten_UK
dc.contributor.authorShah, Zubairen_UK
dc.date.accessioned2024-10-08T00:03:44Z-
dc.date.available2024-10-08T00:03:44Z-
dc.date.issued2024en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36289-
dc.description.abstractIn today’s digital era, the escalating phenomenon of cyberbullying is a pervasive and growing concern. With the increasing prevalence of social media platforms, such as Twitter, online abusive behavior has become a significant issue that often leads to unpleasant experiences for users. Manual detection of abnormal and bullying behavior within the realm of social media is inherently not scalable. Moreover, most existing studies on cyberbullying detection have been predominantly conducted in English and very limited work has been done on Urdu (a widely used language in Asia). This paper presents an approach for detecting cyberbullying in Roman Urdu tweets and identifying abuser profiles on Twitter. Firstly, we develop a text corpus of Roman Urdu tweets with user profile data. Subsequently, we employ Gated Recurrent Unit (GRU) model coupled with the application of word2vec technique for word embedding to develop a cyberbullying detection model. Furthermore, we present temporal abusive tweet probability analysis method to provide a nuanced analysis of the number of bullying and non-bullying tweets sent by individuals within a specific time interval. To evaluate the performance, we compare the GRU-based approach with other machine learning models. The results show that the GRU model with lexical normalization gives the best results with an accuracy of 97% and F1-measure of 97%.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationAtif A, Zafar A, Wasim M, Waheed T, Ali A, Ali H & Shah Z (2024) Cyberbullying Detection and Abuser Profile Identification on Social Media for Roman Urdu. <i>IEEE Access</i>, 12. https://doi.org/10.1109/access.2024.3445288en_UK
dc.rightsCCBY - IEEE is not the copyright holder of this material. Please follow the instructions via https://creativecommons.org/licenses/by/4.0/ to obtain full-text articles and stipulations in the API documentation.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.titleCyberbullying Detection and Abuser Profile Identification on Social Media for Roman Urduen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/access.2024.3445288en_UK
dc.citation.jtitleIEEE Accessen_UK
dc.citation.issn2169-3536en_UK
dc.citation.volume12en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderQatar National Research Funden_UK
dc.author.emailali.hazrat@stir.ac.uken_UK
dc.citation.date16/08/2024en_UK
dc.contributor.affiliationUniversity of Engineering and Technology Lahore (UET)en_UK
dc.contributor.affiliationUniversity of Engineering and Technology Lahore (UET)en_UK
dc.contributor.affiliationUniversity of Management and Technology Sialkot Campusen_UK
dc.contributor.affiliationUniversity of Engineering and Technology Lahore (UET)en_UK
dc.contributor.affiliationHamad Bin Khalifa University (HBKU)en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationHamad Bin Khalifa University (HBKU)en_UK
dc.identifier.isiWOS:001311209600001en_UK
dc.identifier.scopusid2-s2.0-85201626604en_UK
dc.identifier.wtid2042551en_UK
dc.contributor.orcid0000-0002-7270-7238en_UK
dc.contributor.orcid0000-0002-8350-5914en_UK
dc.contributor.orcid0000-0002-5346-1017en_UK
dc.contributor.orcid0000-0003-3058-5794en_UK
dc.date.accepted2024-08-07en_UK
dcterms.dateAccepted2024-08-07en_UK
dc.date.filedepositdate2024-10-07en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAtif, Ayesha|en_UK
local.rioxx.authorZafar, Amna|0000-0002-7270-7238en_UK
local.rioxx.authorWasim, Muhammad|en_UK
local.rioxx.authorWaheed, Talha|0000-0002-8350-5914en_UK
local.rioxx.authorAli, Amjad|0000-0002-5346-1017en_UK
local.rioxx.authorAli, Hazrat|0000-0003-3058-5794en_UK
local.rioxx.authorShah, Zubair|en_UK
local.rioxx.projectProject ID unknown|Qatar National Research Fund|http://dx.doi.org/10.13039/100008982en_UK
local.rioxx.freetoreaddate2024-10-07en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-10-07|en_UK
local.rioxx.filenameCyberbullying_Detection_and_Abuser_Profile_Identification_on_Social_Media_for_Roman_Urdu.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2169-3536en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Cyberbullying_Detection_and_Abuser_Profile_Identification_on_Social_Media_for_Roman_Urdu.pdfFulltext - Published Version2.41 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.