Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36304
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaier, Patricken_UK
dc.contributor.authorRainey, Jamesen_UK
dc.contributor.authorGheorghiu, Elenaen_UK
dc.contributor.authorAppiah, Kofien_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.date.accessioned2024-10-10T00:01:29Z-
dc.date.available2024-10-10T00:01:29Z-
dc.date.issued2024en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36304-
dc.description.abstractDespite tremendous advancement in computer vision, especially with deep learning, understanding scenes in the wild remains challenging. Even modern image classification models often misclassify when presented with out-of-distribution inputs despite having been trained on tens of millions of images or more. Moreover, training modern deep-learning classifiers requires a lot of energy due to the need to iterate many times over the training set, constantly updating billions of model parameters. Owing to problems with generalisability and robustness as well as efficiency, there is growing interest in computer vision to mimic biological vision (e.g., human vision) in the hope that doing so will require fewer resources for training both in terms of energy and in terms of data sets while increasing robustness and generalisability. This paper proposes a biologically plausible neuromorphic vision system that is based on a spiking neural network and is evaluated on the classification of hand-written digits from the MNIST dataset. The experimental outcome indicates improved robustness of the proposed approach over state-of-the-art considering non-digit detection.en_UK
dc.language.isoenen_UK
dc.publisherSociety of Photo-optical Instrumentation Engineersen_UK
dc.rightsPublisher allows this work to be made available in this repository. Published in Proceedings of SPIE by [name of publisher] with the following policy: SPIE grants to authors (and their employers) of papers, posters, and presentation recordings published in Proceedings of SPIE the right to post an author-prepared version or the officially published version (preferred) on an internal or external repository controlled exclusively by the author/employer, or the entity funding the research, provided that (a) such posting is noncommercial and the publication is made available to users without charge; (b) an appropriate SPIE attribution and citation appear with the publication; and (c) a DOI link to SPIE’s official online version of the publication is provided. Please cite as: Patrick Maier, James Rainey, Elena Gheorghiu, Kofi Appiah, and Deepayan Bhowmik "Digit classification using biologically plausible neuromorphic vision", Proc. SPIE 13137, Applications of Digital Image Processing XLVII, 131370I (30 September 2024); https://doi.org/10.1117/12.3031280en_UK
dc.subjectNeuromorphic visionen_UK
dc.subjectdigit classificationen_UK
dc.subjectspiking neural networken_UK
dc.subjecthuman vision systemen_UK
dc.titleDigit Classification using Biologically Plausible Neuromorphic Visionen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1117/12.3031280en_UK
dc.citation.jtitleProceedings of SPIEen_UK
dc.citation.issn1996-756Xen_UK
dc.citation.issn0277-786Xen_UK
dc.citation.volume13137en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderMoD Ministry of Defence (MoD)en_UK
dc.author.emailelena.gheorghiu@stir.ac.uken_UK
dc.citation.conferencenameApplications of Digital Image Processing XLVIIen_UK
dc.citation.date30/09/2024en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationUniversity of Yorken_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.identifier.wtid2034200en_UK
dc.contributor.orcid0000-0002-7051-8169en_UK
dc.contributor.orcid0000-0002-9459-1969en_UK
dc.date.accepted2024-04-29en_UK
dcterms.dateAccepted2024-04-29en_UK
dc.date.filedepositdate2024-08-10en_UK
dc.relation.funderprojectNeuromorphic Vision System (NEVIS)en_UK
dc.relation.funderrefNU014401en_UK
rioxxterms.apcunknownen_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMaier, Patrick|0000-0002-7051-8169en_UK
local.rioxx.authorRainey, James|en_UK
local.rioxx.authorGheorghiu, Elena|0000-0002-9459-1969en_UK
local.rioxx.authorAppiah, Kofi|en_UK
local.rioxx.authorBhowmik, Deepayan|en_UK
local.rioxx.projectNU014401|Ministry of Defence (MoD)|en_UK
local.rioxx.freetoreaddate2024-10-09en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2024-10-09|en_UK
local.rioxx.filename2024_Neuromorphic_Digital_Classification_final_31.07.2024.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0277-786Xen_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
2024_Neuromorphic_Digital_Classification_final_31.07.2024.pdfFulltext - Accepted Version1.1 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.