Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/36335
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Asghari Beirami, Behnam | en_UK |
dc.contributor.author | Alizadeh Pirbasti, Mehran | en_UK |
dc.contributor.author | Akbari, Vahid | en_UK |
dc.date.accessioned | 2024-10-12T00:01:55Z | - |
dc.date.available | 2024-10-12T00:01:55Z | - |
dc.date.issued | 2024-08-21 | en_UK |
dc.identifier.other | 7361 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/36335 | - |
dc.description.abstract | One primary concern in the field of remote-sensing image processing is the precise classification of hyperspectral images (HSIs). Lately, deep-learning models have demonstrated cutting-edge results in HSI classification. Despite this, researchers continue to study and propose simpler, more robust models. This study presents a novel deep-learning approach, the iterative convolutional neural network (ICNN), which combines spectral–fractal features and classifier probability maps iteratively, aiming to enhance the HSI classification accuracy. Experiments are conducted to prove the accuracy enhancement of the proposed method using HSI benchmark datasets of Indian pine (IP) and the University of Pavia (PU) to evaluate the performance of the proposed technique. The final results show that the proposed approach reaches overall accuracies of 99.16% and 95.5% on the IP and PU datasets, respectively, which are better than some basic methods. Additionally, the end findings demonstrate that greater accuracy levels might be achieved using a primary CNN network that employs the iteration loop than with certain current state-of-the-art spatial–spectral HSI classification techniques. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | MDPI AG | en_UK |
dc.relation | Asghari Beirami B, Alizadeh Pirbasti M & Akbari V (2024) SF-ICNN: Spectral–Fractal Iterative Convolutional Neural Network for Classification of Hyperspectral Images. <i>Applied Sciences</i>, 14 (16), Art. No.: 7361. https://doi.org/10.3390/app14167361 | en_UK |
dc.rights | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | iterative convolutional neural network | en_UK |
dc.subject | fractal features | en_UK |
dc.subject | hyperspectral image | en_UK |
dc.subject | spatial-spectral features | en_UK |
dc.title | SF-ICNN: Spectral–Fractal Iterative Convolutional Neural Network for Classification of Hyperspectral Images | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.3390/app14167361 | en_UK |
dc.citation.jtitle | Applied Sciences | en_UK |
dc.citation.issn | 2076-3417 | en_UK |
dc.citation.volume | 14 | en_UK |
dc.citation.issue | 16 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | vahid.akbari@stir.ac.uk | en_UK |
dc.citation.date | 21/08/2024 | en_UK |
dc.contributor.affiliation | K.N. Toosi University of Technology | en_UK |
dc.contributor.affiliation | University College Dublin (UCD) | en_UK |
dc.contributor.affiliation | Computing Science and Mathematics - Division | en_UK |
dc.identifier.isi | WOS:001305309500001 | en_UK |
dc.identifier.scopusid | 2-s2.0-85202437832 | en_UK |
dc.identifier.wtid | 2047853 | en_UK |
dc.contributor.orcid | 0000-0002-0314-1912 | en_UK |
dc.contributor.orcid | 0000-0003-2283-499X | en_UK |
dc.contributor.orcid | 0000-0002-9621-8180 | en_UK |
dc.date.accepted | 2024-08-19 | en_UK |
dcterms.dateAccepted | 2024-08-19 | en_UK |
dc.date.filedepositdate | 2024-10-10 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Asghari Beirami, Behnam|0000-0002-0314-1912 | en_UK |
local.rioxx.author | Alizadeh Pirbasti, Mehran|0000-0003-2283-499X | en_UK |
local.rioxx.author | Akbari, Vahid|0000-0002-9621-8180 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2024-10-10 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2024-10-10| | en_UK |
local.rioxx.filename | applsci-14-07361.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 2076-3417 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
applsci-14-07361.pdf | Fulltext - Published Version | 2.4 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.