Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36335
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAsghari Beirami, Behnamen_UK
dc.contributor.authorAlizadeh Pirbasti, Mehranen_UK
dc.contributor.authorAkbari, Vahiden_UK
dc.date.accessioned2024-10-12T00:01:55Z-
dc.date.available2024-10-12T00:01:55Z-
dc.date.issued2024-08-21en_UK
dc.identifier.other7361en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36335-
dc.description.abstractOne primary concern in the field of remote-sensing image processing is the precise classification of hyperspectral images (HSIs). Lately, deep-learning models have demonstrated cutting-edge results in HSI classification. Despite this, researchers continue to study and propose simpler, more robust models. This study presents a novel deep-learning approach, the iterative convolutional neural network (ICNN), which combines spectral–fractal features and classifier probability maps iteratively, aiming to enhance the HSI classification accuracy. Experiments are conducted to prove the accuracy enhancement of the proposed method using HSI benchmark datasets of Indian pine (IP) and the University of Pavia (PU) to evaluate the performance of the proposed technique. The final results show that the proposed approach reaches overall accuracies of 99.16% and 95.5% on the IP and PU datasets, respectively, which are better than some basic methods. Additionally, the end findings demonstrate that greater accuracy levels might be achieved using a primary CNN network that employs the iteration loop than with certain current state-of-the-art spatial–spectral HSI classification techniques.en_UK
dc.language.isoenen_UK
dc.publisherMDPI AGen_UK
dc.relationAsghari Beirami B, Alizadeh Pirbasti M & Akbari V (2024) SF-ICNN: Spectral–Fractal Iterative Convolutional Neural Network for Classification of Hyperspectral Images. <i>Applied Sciences</i>, 14 (16), Art. No.: 7361. https://doi.org/10.3390/app14167361en_UK
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectiterative convolutional neural networken_UK
dc.subjectfractal featuresen_UK
dc.subjecthyperspectral imageen_UK
dc.subjectspatial-spectral featuresen_UK
dc.titleSF-ICNN: Spectral–Fractal Iterative Convolutional Neural Network for Classification of Hyperspectral Imagesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/app14167361en_UK
dc.citation.jtitleApplied Sciencesen_UK
dc.citation.issn2076-3417en_UK
dc.citation.volume14en_UK
dc.citation.issue16en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailvahid.akbari@stir.ac.uken_UK
dc.citation.date21/08/2024en_UK
dc.contributor.affiliationK.N. Toosi University of Technologyen_UK
dc.contributor.affiliationUniversity College Dublin (UCD)en_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.identifier.isiWOS:001305309500001en_UK
dc.identifier.scopusid2-s2.0-85202437832en_UK
dc.identifier.wtid2047853en_UK
dc.contributor.orcid0000-0002-0314-1912en_UK
dc.contributor.orcid0000-0003-2283-499Xen_UK
dc.contributor.orcid0000-0002-9621-8180en_UK
dc.date.accepted2024-08-19en_UK
dcterms.dateAccepted2024-08-19en_UK
dc.date.filedepositdate2024-10-10en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAsghari Beirami, Behnam|0000-0002-0314-1912en_UK
local.rioxx.authorAlizadeh Pirbasti, Mehran|0000-0003-2283-499Xen_UK
local.rioxx.authorAkbari, Vahid|0000-0002-9621-8180en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-10-10en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-10-10|en_UK
local.rioxx.filenameapplsci-14-07361.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2076-3417en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
applsci-14-07361.pdfFulltext - Published Version2.4 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.