Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaister, Matthewen_UK
dc.contributor.authorMcTaggart, Ewanen_UK
dc.contributor.authorMcMenemy, Paulen_UK
dc.contributor.authorMegiddo, Itamaren_UK
dc.contributor.authorKleczkowski, Adamen_UK
dc.date.accessioned2024-11-06T01:01:03Z-
dc.date.available2024-11-06T01:01:03Z-
dc.date.issued2024-09en_UK
dc.identifier.other100781en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36405-
dc.description.abstractThe movement of populations between locations and activities can result in complex transmission dynamics, posing significant challenges in controlling infectious diseases like COVID-19. Notably, networks of care homes create an ecosystem where staff and visitor movement acts as a vector for disease transmission, contributing to the heightened risk for their vulnerable communities. Care homes in the UK were disproportionately affected by the first wave of the COVID-19 pandemic, accounting for almost half of COVID-19 deaths during the period of 6th March – 15th June 2020 and so there is a pressing need to explore modelling approaches suitable for such systems. We develop a generic compartmental Susceptible - Exposed - Infectious - Recovered - Dead (SEIRD) metapopulation model, with care home residents, care home workers, and the general population modelled as subpopulations, interacting on a network describing their mixing habits. We illustrate the model application by analysing the spread of COVID-19 over the first wave of the COVID-19 pandemic in the NHS Lothian health board, Scotland. We explicitly model the outbreak’s reproduction rate and care home visitation level over time for each subpopulation and execute a data fit and sensitivity analysis, focusing on parameters responsible for inter-subpopulation mixing: staff-sharing, staff shift patterns and visitation. The results from our sensitivity analysis show that restricting staff sharing between homes and staff interaction with the general public would significantly mitigate the disease burden. Our findings indicate that protecting care home staff from disease, coupled with reductions in staff-sharing across care homes and expedient cancellations of visitations, can significantly reduce the size of outbreaks in care home settings.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationBaister M, McTaggart E, McMenemy P, Megiddo I & Kleczkowski A (2024) COVID-19 in Scottish care homes: A metapopulation model of spread among residents and staff. <i>Epidemics</i>, 48, Art. No.: 100781. https://www.sciencedirect.com/science/article/pii/S1755436524000422; https://doi.org/10.1016/j.epidem.2024.100781en_UK
dc.rightsAll content on this site: Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectCOVID-19en_UK
dc.subjectEpidemic modellingen_UK
dc.subjectMeta-populationen_UK
dc.subjectCare homeen_UK
dc.titleCOVID-19 in Scottish care homes: A metapopulation model of spread among residents and staffen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.epidem.2024.100781en_UK
dc.identifier.pmid38991457en_UK
dc.citation.jtitleEpidemicsen_UK
dc.citation.issn1755-4365en_UK
dc.citation.volume48en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderUniversity of Strathclydeen_UK
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S1755436524000422en_UK
dc.author.emailpaul.mcmenemy1@stir.ac.uken_UK
dc.citation.date05/07/2024en_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.isiWOS:001268613700001en_UK
dc.identifier.scopusid2-s2.0-85197754737en_UK
dc.identifier.wtid2060800en_UK
dc.contributor.orcid0000-0002-8030-5116en_UK
dc.contributor.orcid0000-0002-5280-425Xen_UK
dc.date.accepted2024-06-18en_UK
dcterms.dateAccepted2024-06-18en_UK
dc.date.filedepositdate2024-11-05en_UK
dc.subject.tagInfectious Disease and Mathematical Modelsen_UK
dc.subject.tagModellingen_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBaister, Matthew|0000-0002-8030-5116en_UK
local.rioxx.authorMcTaggart, Ewan|en_UK
local.rioxx.authorMcMenemy, Paul|0000-0002-5280-425Xen_UK
local.rioxx.authorMegiddo, Itamar|en_UK
local.rioxx.authorKleczkowski, Adam|en_UK
local.rioxx.projectProject ID unknown|University of Strathclyde|http://dx.doi.org/10.13039/100008078en_UK
local.rioxx.freetoreaddate2024-11-05en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-11-05|en_UK
local.rioxx.filenameS2451902223001210 (1).htmen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1755-4365en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
S2451902223001210 (1).htmFulltext - Published Version363.27 kBHTMLView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.