Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36495
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli, Teymooren_UK
dc.contributor.authorRainey, Jamesen_UK
dc.contributor.authorLau, Sook Yenen_UK
dc.contributor.authorGheorghiu, Elenaen_UK
dc.contributor.authorMaier, Patricken_UK
dc.contributor.authorAppiah, Kofien_UK
dc.contributor.authorBhowmick, Deepayanen_UK
dc.contributor.editorBouma, Henrien_UK
dc.contributor.editorPrabhu, Radhakrishnaen_UK
dc.contributor.editorYitzhaky, Yitzhaken_UK
dc.contributor.editorKuijf, Hugo Jen_UK
dc.date.accessioned2024-11-23T01:00:44Z-
dc.date.available2024-11-23T01:00:44Z-
dc.date.issued2024en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36495-
dc.description.abstractRapid reaction to a specific event is a critical feature for an embedded computer vision system to ensure reliable and secure interaction with the environment in resource-limited real-time applications. This requires highlevel scene understanding with ultra-fast processing capabilities and the ability to operate at extremely low power. Existing vision systems, which rely on traditional computation techniques, including deep learning-based approaches, are limited by the compute capabilities due to large power dissipation and slow off-chip memory access. These challenges are evident in environments with constrained power, bandwidth and hardware resources, such as in the applications of drones and robot navigation in expansive areas. A new NEuromorphic Vision System (NEVIS) is proposed to address the limitations of existing computer vision systems for many resource-limited real-time applications. NEVIS mimics the efficiency of the human visual system by encoding visual signals into spikes, which are processed by neurons with synaptic connections. The potential of NEVIS is explored through an FPGA-based accelerator implementation on a Xilinx Kria board that achieved 40× speed up compared to a Raspberry Pi 4B CPU. This work informs the future potential of NEVIS in embedded computer vision system development.en_UK
dc.language.isoenen_UK
dc.publisherSPIEen_UK
dc.relationAli T, Rainey J, Lau SY, Gheorghiu E, Maier P, Appiah K & Bhowmick D (2024) An FPGA-based neuromorphic vision system accelerator. In: Bouma H, Prabhu R, Yitzhaky Y & Kuijf HJ (eds.) <i>Artificial Intelligence for Security and Defence Applications II</i>. Proceedings of SPIE, 13206. SPIE "Artificial Intelligence for Security and Defence Applications II, Edinburgh, 16.09.2024-20.09.2024. SPIE.en_UK
dc.relation.ispartofseriesProceedings of SPIE, 13206en_UK
dc.rightsPublisher allows this work to be made available in this repository. Published in Proceedings of SPIE with the following policy: SPIE grants to authors (and their employers) of papers, posters, and presentation recordings published in Proceedings of SPIE the right to post an author-prepared version or the officially published version (preferred) on an internal or external repository controlled exclusively by the author/employer, or the entity funding the research, provided that (a) such posting is noncommercial and the publication is made available to users without charge; (b) an appropriate SPIE attribution and citation appear with the publication; and (c) a DOI link to SPIE’s official online version of the publication is provided. Please cite as: Ali T, Rainey J, Lau SY, Gheorghiu E, Maier P, Appiah K & Bhowmick D (2024) An FPGA-based neuromorphic vision system accelerator. In: <i>Artificial Intelligence for Security and Defence Applications II</i>. Proceedings of SPIE, 13206. SPIE "Artificial Intelligence for Security and Defence Applications II, Edinburgh, 16.09.2024-20.09.2024. SPIE.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_UK
dc.subjectNeuromorphic computingen_UK
dc.subjectVision systemen_UK
dc.subjectAcceleratoren_UK
dc.subjectFPGAen_UK
dc.titleAn FPGA-based neuromorphic vision system acceleratoren_UK
dc.typeConference Paperen_UK
dc.citation.issn0277-786Xen_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailelena.gheorghiu@stir.ac.uken_UK
dc.citation.conferencedates2024-09-16 - 2024-09-20en_UK
dc.citation.conferencelocationEdinburghen_UK
dc.citation.conferencenameSPIE "Artificial Intelligence for Security and Defence Applications IIen_UK
dc.citation.date13/11/2024en_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Yorken_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.identifier.wtid2050222en_UK
dc.contributor.orcid0000-0002-9459-1969en_UK
dc.contributor.orcid0000-0002-7051-8169en_UK
dc.date.accepted2024-07-01en_UK
dcterms.dateAccepted2024-07-01en_UK
dc.date.filedepositdate2024-09-25en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAli, Teymoor|en_UK
local.rioxx.authorRainey, James|en_UK
local.rioxx.authorLau, Sook Yen|en_UK
local.rioxx.authorGheorghiu, Elena|0000-0002-9459-1969en_UK
local.rioxx.authorMaier, Patrick|0000-0002-7051-8169en_UK
local.rioxx.authorAppiah, Kofi|en_UK
local.rioxx.authorBhowmick, Deepayan|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorBouma, Henri|en_UK
local.rioxx.contributorPrabhu, Radhakrishna|en_UK
local.rioxx.contributorYitzhaky, Yitzhak|en_UK
local.rioxx.contributorKuijf, Hugo J|en_UK
local.rioxx.freetoreaddate2024-11-22en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc/4.0/|2024-11-22|en_UK
local.rioxx.filenameSPIE_2024_NEVIS_FPGA_FINAL.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0277-786Xen_UK
Appears in Collections:Psychology Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
SPIE_2024_NEVIS_FPGA_FINAL.pdfFulltext - Accepted Version408.29 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.