Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWall, Conoren_UK
dc.contributor.authorPowell, Dylanen_UK
dc.contributor.authorYoung, Fraseren_UK
dc.contributor.authorZynda, Aaron Jen_UK
dc.contributor.authorStuart, Samen_UK
dc.contributor.authorCovassin, Traceyen_UK
dc.contributor.authorGodfrey, Alanen_UK
dc.date.accessioned2025-03-05T01:04:19Z-
dc.date.available2025-03-05T01:04:19Z-
dc.date.issued2022-09-28en_UK
dc.identifier.othere0274395en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36615-
dc.description.abstractMild traumatic brain injury (mTBI or concussion) is receiving increased attention due to the incidence in contact sports and limitations with subjective (pen and paper) diagnostic approaches. If an mTBI is undiagnosed and the athlete prematurely returns to play, it can result in serious short-term and/or long-term health complications. This demonstrates the importance of providing more reliable mTBI diagnostic tools to mitigate misdiagnosis. Accordingly, there is a need to develop reliable and efficient objective approaches with computationally robust diagnostic methods. Here in this pilot study, we propose the extraction of Mel Frequency Cepstral Coefficient (MFCC) features from audio recordings of speech that were collected from athletes engaging in rugby union who were diagnosed with an mTBI or not. These features were trained on our novel particle swarm optimised (PSO) bidirectional long short-term memory attention (Bi-LSTM-A) deep learning model. Little-to-no overfitting occurred during the training process, indicating strong reliability of the approach regarding the current test dataset classification results and future test data. Sensitivity and specificity to distinguish those with an mTBI were 94.7% and 86.2%, respectively, with an AUROC score of 0.904. This indicates a strong potential for the deep learning approach, with future improvements in classification results relying on more participant data and further innovations to the Bi-LSTM-A model to fully establish this approach as a pragmatic mTBI diagnostic tool.en_UK
dc.language.isoenen_UK
dc.publisherPublic Library of Science (PLoS)en_UK
dc.relationWall C, Powell D, Young F, Zynda AJ, Stuart S, Covassin T & Godfrey A (2022) A deep learning-based approach to diagnose mild traumatic brain injury using audio classification. <i>PLOS ONE</i>, 17 (9), Art. No.: e0274395. https://doi.org/10.1371/journal.pone.0274395en_UK
dc.rightsCopyright: © 2022 Wall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.titleA deep learning-based approach to diagnose mild traumatic brain injury using audio classificationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1371/journal.pone.0274395en_UK
dc.identifier.pmid36170287en_UK
dc.citation.jtitlePLoS ONEen_UK
dc.citation.issn1932-6203en_UK
dc.citation.issn1932-6203en_UK
dc.citation.volume17en_UK
dc.citation.issue9en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderPrivate Physiotherapy Educational Foundationen_UK
dc.contributor.funderPrivate Physiotherapy Educational Foundationen_UK
dc.author.emaildylan.powell@stir.ac.uken_UK
dc.citation.date28/09/2022en_UK
dc.contributor.affiliationNorthumbria Universityen_UK
dc.contributor.affiliationNorthumbria Universityen_UK
dc.contributor.affiliationNorthumbria Universityen_UK
dc.contributor.affiliationMichigan State Universityen_UK
dc.contributor.affiliationNorthumbria Universityen_UK
dc.contributor.affiliationMichigan State Universityen_UK
dc.contributor.affiliationNorthumbria Universityen_UK
dc.identifier.isiWOS:000954732900001en_UK
dc.identifier.scopusid2-s2.0-85139242597en_UK
dc.identifier.wtid2087610en_UK
dc.contributor.orcid0000-0003-1233-5468en_UK
dc.contributor.orcid0000-0003-0663-7320en_UK
dc.contributor.orcid0000-0003-4049-9291en_UK
dc.date.accepted2022-08-26en_UK
dcterms.dateAccepted2022-08-26en_UK
dc.date.filedepositdate2025-03-04en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWall, Conor|en_UK
local.rioxx.authorPowell, Dylan|0000-0003-1233-5468en_UK
local.rioxx.authorYoung, Fraser|en_UK
local.rioxx.authorZynda, Aaron J|0000-0003-0663-7320en_UK
local.rioxx.authorStuart, Sam|en_UK
local.rioxx.authorCovassin, Tracey|en_UK
local.rioxx.authorGodfrey, Alan|0000-0003-4049-9291en_UK
local.rioxx.projectProject ID unknown|Private Physiotherapy Educational Foundation|en_UK
local.rioxx.freetoreaddate2025-03-04en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-03-04|en_UK
local.rioxx.filenamejournal.pone.0274395.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1932-6203en_UK
Appears in Collections:Faculty of Health Sciences and Sport Journal Articles

Files in This Item:
File Description SizeFormat 
journal.pone.0274395.pdfFulltext - Published Version987.12 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.