Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36669
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJan, Naziren_UK
dc.contributor.authorMinallah, Nasruen_UK
dc.contributor.authorSher, Madihaen_UK
dc.contributor.authorWasim, Muhammaden_UK
dc.contributor.authorKhan, Shahiden_UK
dc.contributor.authorAl‐Rasheed, Amalen_UK
dc.contributor.authorAli, Hazraten_UK
dc.date.accessioned2025-03-05T01:35:53Z-
dc.date.available2025-03-05T01:35:53Z-
dc.date.issued2024-10-14en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36669-
dc.description.abstractAutomating mineral delineation and rock type analysis using remote sensing imaging data is a critical application of machine learning. Traditional machine learning methods often struggle with accuracy and precise map generation. This study aims to enhance performance through a refined deep learning model. In this work, we present a deep learning pipeline to map the mineral deposits in the study area. Initially, we apply a deep convolutional neural network (CNN) to a specialized mineral dataset to map mineral deposits within the study area. Subsequently, we build a hybrid model combining deep CNN layers with a support vector machine (SVM). This merger significantly improves classification accuracy from an initial 92.7% to 95.3%. In our approach, CNN layers function as feature extractors while the SVM serves as the classification model. Moreover, we conduct an evaluation of the SVM using polynomial kernels of degrees 3, 6, 9, and 12. The results indicate that the SVM with a degree of 12 achieved the highest classification accuracy, followed by degrees 9, 6, and 3. Experimental results demonstrate the effectiveness of our proposed method for classifying remote sensing imaging data, showcasing its potential for advancing mineral delineation and rock type analysis.en_UK
dc.language.isoenen_UK
dc.publisherWileyen_UK
dc.relationJan N, Minallah N, Sher M, Wasim M, Khan S, Al‐Rasheed A & Ali H (2024) Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote Sensing Imaging Data. <i>Engineering Reports</i>, 7 (1). https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.13031; https://doi.org/10.1002/eng2.13031en_UK
dc.titleAdvanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote Sensing Imaging Dataen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1002/eng2.13031en_UK
dc.citation.jtitleEngineering Reportsen_UK
dc.citation.issn2577-8196en_UK
dc.citation.issn2577-8196en_UK
dc.citation.volume7en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/eng2.13031en_UK
dc.author.emailali.hazrat@stir.ac.uken_UK
dc.citation.date05/11/2024en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid2087723en_UK
dc.contributor.orcid0000-0003-3058-5794en_UK
dc.date.accepted2024-10-14en_UK
dcterms.dateAccepted2024-10-14en_UK
dc.date.filedepositdate2024-11-05en_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorJan, Nazir|en_UK
local.rioxx.authorMinallah, Nasru|en_UK
local.rioxx.authorSher, Madiha|en_UK
local.rioxx.authorWasim, Muhammad|en_UK
local.rioxx.authorKhan, Shahid|en_UK
local.rioxx.authorAl‐Rasheed, Amal|en_UK
local.rioxx.authorAli, Hazrat|0000-0003-3058-5794en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-01-24en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2025-01-24|en_UK
local.rioxx.filenameEngineering Reports - 2024 - Jan - Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2577-8196en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Engineering Reports - 2024 - Jan - Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote.pdfFulltext - Published Version3.83 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.