Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36696
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli, Hazraten_UK
dc.contributor.authorShah, Zubairen_UK
dc.contributor.authorAlam, Tanviren_UK
dc.contributor.authorWijayatunga, Priyanthaen_UK
dc.contributor.authorElyan, Eyaden_UK
dc.date.accessioned2025-03-08T01:11:20Z-
dc.date.available2025-03-08T01:11:20Z-
dc.date.issued2024-01-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36696-
dc.description.abstractFirst paragraph: Artificial Intelligence (AI) has gained huge attention in computer-aided decision-making in the healthcare domain. Many novel AI methods have been developed for disease diagnosis and prognosis which may support in the prevention of disease. Most diseases can be cured early and managed better if timely diagnosis is made. The AI models can aid clinical diagnosis; thus, they make the processes more efficient by reducing the workload of physicians, nurses, radiologists, and others. However, the majority of AI methods rely on the use of single-modality data. For example, brain tumor detection uses brain MRI, skin lesion detection uses skin pathology images, and lung cancer detection uses lung CT or x-ray imaging (1). Single-modality AI models lack the much-needed integration of complex features available from different modality data, such as electronic health records (EHR), unstructured clinical notes, and different medical imaging modalities– otherwise form the backbone of clinical decision-making.en_UK
dc.language.isoenen_UK
dc.publisherFrontiers Media SAen_UK
dc.relationAli H, Shah Z, Alam T, Wijayatunga P & Elyan E (2024) Editorial: Recent advances in multimodal artificial intelligence for disease diagnosis, prognosis, and prevention. <i>Frontiers in Radiology</i>, 3. https://doi.org/10.3389/fradi.2023.1349830en_UK
dc.rights© 2024 Ali, Shah, Alam, Wijayatunga and Elyan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectelectronic health recordsen_UK
dc.subjecthealthcareen_UK
dc.subjectmedical imagingen_UK
dc.subjectradiologyen_UK
dc.subjectmultimodal artificial intelligenceen_UK
dc.subjectvision transformersen_UK
dc.titleEditorial: Recent advances in multimodal artificial intelligence for disease diagnosis, prognosis, and preventionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3389/fradi.2023.1349830en_UK
dc.identifier.pmid38268783en_UK
dc.citation.jtitleFrontiers in Radiologyen_UK
dc.citation.issn2673-8740en_UK
dc.citation.issn2673-8740en_UK
dc.citation.volume3en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedUnrefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailali.hazrat@stir.ac.uken_UK
dc.citation.date10/01/2024en_UK
dc.contributor.affiliationHamad Bin Khalifa Universityen_UK
dc.contributor.affiliationHamad Bin Khalifa Universityen_UK
dc.contributor.affiliationHamad Bin Khalifa Universityen_UK
dc.contributor.affiliationUmea Universityen_UK
dc.contributor.affiliationRobert Gordon Universityen_UK
dc.identifier.isiWOS:001215776000001en_UK
dc.identifier.wtid2074215en_UK
dc.contributor.orcid0000-0003-3058-5794en_UK
dc.date.accepted2023-12-11en_UK
dcterms.dateAccepted2023-12-11en_UK
dc.date.filedepositdate2024-12-13en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAli, Hazrat|0000-0003-3058-5794en_UK
local.rioxx.authorShah, Zubair|en_UK
local.rioxx.authorAlam, Tanvir|en_UK
local.rioxx.authorWijayatunga, Priyantha|en_UK
local.rioxx.authorElyan, Eyad|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-12-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-12-13|en_UK
local.rioxx.filenamefradi-03-1349830.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2673-8740en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
fradi-03-1349830.pdfFulltext - Published Version176.38 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.