Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36698
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Fatimaelzahraa Alien_UK
dc.contributor.authorYousef, Mahmouden_UK
dc.contributor.authorAhmed, Mariam Alien_UK
dc.contributor.authorAli, Hasan Omaren_UK
dc.contributor.authorMahboob, Annsen_UK
dc.contributor.authorAli, Hazraten_UK
dc.contributor.authorShah, Zubairen_UK
dc.contributor.authorAboumarzouk, Omaren_UK
dc.contributor.authorAl Ansari, Abdullaen_UK
dc.contributor.authorBalakrishnan, Shidinen_UK
dc.date.accessioned2025-03-08T01:12:26Z-
dc.date.available2025-03-08T01:12:26Z-
dc.date.issued2024-11-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36698-
dc.description.abstractApplying deep learning (DL) for annotating surgical instruments in robot-assisted minimally invasive surgeries (MIS) represents a significant advancement in surgical technology. This systematic review examines 48 studies that utilize advanced DL methods and architectures. These sophisticated DL models have shown notable improvements in the precision and efficiency of detecting and segmenting surgical tools. The enhanced capabilities of these models support various clinical applications, including real-time intraoperative guidance, comprehensive postoperative evaluations, and objective assessments of surgical skills. By accurately identifying and segmenting surgical instruments in video data, DL models provide detailed feedback to surgeons, thereby improving surgical outcomes and reducing complication risks. Furthermore, the application of DL in surgical education is transformative. The review underscores the significant impact of DL on improving the accuracy of skill assessments and the overall quality of surgical training programs. However, implementing DL in surgical tool detection and segmentation faces challenges, such as the need for large, accurately annotated datasets to train these models effectively. The manual annotation process is labor-intensive and time-consuming, posing a significant bottleneck. Future research should focus on automating the detection and segmentation process and enhancing the robustness of DL models against environmental variations. Expanding the application of DL models across various surgical specialties will be essential to fully realize this technology’s potential. Integrating DL with other emerging technologies, such as augmented reality (AR), also offers promising opportunities to further enhance the precision and efficacy of surgical procedures.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Science and Business Media LLCen_UK
dc.relationAhmed FA, Yousef M, Ahmed MA, Ali HO, Mahboob A, Ali H, Shah Z, Aboumarzouk O, Al Ansari A & Balakrishnan S (2024) Deep learning for surgical instrument recognition and segmentation in robotic-assisted surgeries: a systematic review. <i>Artificial Intelligence Review</i>, 58 (1). https://doi.org/10.1007/s10462-024-10979-wen_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectDeep learningen_UK
dc.subjectSurgical tool annotationen_UK
dc.subjectRobotic surgeryen_UK
dc.subjectMinimally invasive surgeryen_UK
dc.subjectConvolutional neural networksen_UK
dc.subjectU-Neten_UK
dc.subjectResNeten_UK
dc.titleDeep learning for surgical instrument recognition and segmentation in robotic-assisted surgeries: a systematic reviewen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s10462-024-10979-wen_UK
dc.citation.jtitleArtificial Intelligence Reviewen_UK
dc.citation.issn1573-7462en_UK
dc.citation.issn0269-2821en_UK
dc.citation.volume58en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailali.hazrat@stir.ac.uken_UK
dc.citation.date04/11/2024en_UK
dc.contributor.affiliationHamad Medical Corporationen_UK
dc.contributor.affiliationWeill Cornell Medicineen_UK
dc.contributor.affiliationQatar Universityen_UK
dc.contributor.affiliationWeill Cornell Medicineen_UK
dc.contributor.affiliationWeill Cornell Medicineen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationHamad Bin Khalifa Universityen_UK
dc.contributor.affiliationHamad Medical Corporationen_UK
dc.contributor.affiliationHamad Medical Corporationen_UK
dc.contributor.affiliationHamad Medical Corporationen_UK
dc.identifier.isiWOS:001347330400002en_UK
dc.identifier.scopusid2-s2.0-85208616359en_UK
dc.identifier.wtid2074156en_UK
dc.contributor.orcid0000-0003-3058-5794en_UK
dc.contributor.orcid0000-0001-6361-4980en_UK
dc.date.accepted2024-09-26en_UK
dcterms.dateAccepted2024-09-26en_UK
dc.date.filedepositdate2024-12-12en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAhmed, Fatimaelzahraa Ali|en_UK
local.rioxx.authorYousef, Mahmoud|en_UK
local.rioxx.authorAhmed, Mariam Ali|en_UK
local.rioxx.authorAli, Hasan Omar|en_UK
local.rioxx.authorMahboob, Anns|en_UK
local.rioxx.authorAli, Hazrat|0000-0003-3058-5794en_UK
local.rioxx.authorShah, Zubair|en_UK
local.rioxx.authorAboumarzouk, Omar|en_UK
local.rioxx.authorAl Ansari, Abdulla|en_UK
local.rioxx.authorBalakrishnan, Shidin|0000-0001-6361-4980en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-12-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-12-13|en_UK
local.rioxx.filenames10462-024-10979-w-1.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1573-7462en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
s10462-024-10979-w-1.pdfFulltext - Published Version2.16 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.