Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36755
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmeer, Iqraen_UK
dc.contributor.authorBölücü, Necvaen_UK
dc.contributor.authorSidorov, Grigorien_UK
dc.contributor.authorCan, Burcuen_UK
dc.date.accessioned2025-03-11T01:02:31Z-
dc.date.available2025-03-11T01:02:31Z-
dc.date.issued2023-05-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36755-
dc.description.abstractSocial media is a widely used platform that provides a huge amount of user-generated content that can be processed to extract information about users’ emotions. This has numerous benefits, such as understanding how individuals feel about certain news or events. It can be challenging to categorize emotions from text created on social media, especially when trying to identify several different emotions from a short text length, as in a multi-label classification problem. Most previous work on emotion classification has focused on deep neural networks such as Convolutional Neural Networks and Recurrent Neural Networks. However, none of these networks have used semantic and syntactic knowledge to classify multiple emotions from a text. In this study, semantic and syntactic aware graph attention networks were proposed to classify emotions from a text with multiple labels. We integrated semantic information in the graph attention network in the form of Universal Conceptual Cognitive Annotation and syntactic information in the form of dependency trees. Our extensive experimental results showed that our two models, UCCA-GAT (accuracy = 71.2) and Dep-GAT (accuracy = 68.7), were able to outperform the state-of-the-art performance on both the challenging SemEval-2018 E-c: Detecting Emotions (multi-label classification) English dataset (accuracy = 58.8) and GoEmotions dataset (accuracy = 65.9).en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationAmeer I, Bölücü N, Sidorov G & Can B (2023) Emotion Classification in Texts Over Graph Neural Networks: Semantic Representation is Better Than Syntactic. <i>IEEE Access</i>, 11, pp. 56921-56934. https://doi.org/10.1109/access.2023.3281544en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectSemanticsen_UK
dc.subjectSyntacticsen_UK
dc.subjectEmotion recognitionen_UK
dc.subjectFeature extractionen_UK
dc.subjectDeep learningen_UK
dc.subjectSocial networking (online)en_UK
dc.subjectGraph neural networksen_UK
dc.titleEmotion Classification in Texts Over Graph Neural Networks: Semantic Representation is Better Than Syntacticen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/access.2023.3281544en_UK
dc.citation.jtitleIEEE Accessen_UK
dc.citation.issn2169-3536en_UK
dc.citation.volume11en_UK
dc.citation.spage56921en_UK
dc.citation.epage56934en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailburcu.can@stir.ac.uken_UK
dc.contributor.affiliationThe Pennsylvania State Universityen_UK
dc.contributor.affiliationHacettepe Universityen_UK
dc.contributor.affiliationCentro de Investigación en Computación, Mexico City, Mexicoen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:001010613200001en_UK
dc.identifier.scopusid2-s2.0-85161057392en_UK
dc.identifier.wtid2075270en_UK
dc.contributor.orcid0000-0002-1134-9713en_UK
dc.contributor.orcid0000-0003-3901-3522en_UK
dc.date.accepted2022-12-29en_UK
dcterms.dateAccepted2022-12-29en_UK
dc.date.filedepositdate2024-11-27en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAmeer, Iqra|0000-0002-1134-9713en_UK
local.rioxx.authorBölücü, Necva|en_UK
local.rioxx.authorSidorov, Grigori|0000-0003-3901-3522en_UK
local.rioxx.authorCan, Burcu|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-03-10en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2025-03-10|en_UK
local.rioxx.filenameEmotion_Classification_in_Texts_Over_Graph_Neural_Networks_Semantic_Representation_is_Better_Than_Syntactic.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2169-3536en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Emotion_Classification_in_Texts_Over_Graph_Neural_Networks_Semantic_Representation_is_Better_Than_Syntactic.pdfFulltext - Published Version2.2 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.