Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36788
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQureshi, Ayyaz Ul Haqen_UK
dc.contributor.authorLarijani, Hadien_UK
dc.contributor.authorYousefi, Mehdien_UK
dc.contributor.authorAdeel, Ahsanen_UK
dc.contributor.authorMtetwa, Nhamoinesuen_UK
dc.date.accessioned2025-03-11T01:18:54Z-
dc.date.available2025-03-11T01:18:54Z-
dc.date.issued2020en_UK
dc.identifier.other58en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36788-
dc.description.abstractIn today’s digital world, the information systems are revolutionizing the way we connect. As the people are trying to adopt and integrate intelligent systems into daily lives, the risks around cyberattacks on user-specific information have significantly grown. To ensure safe communication, the Intrusion Detection Systems (IDS) were developed often by using machine learning (ML) algorithms that have the unique ability to detect malware against network security violations. Recently, it was reported that the IDS are prone to carefully crafted perturbations known as adversaries. With the aim to understand the impact of such attacks, in this paper, we have proposed a novel random neural network-based adversarial intrusion detection system (RNN-ADV). The NSL-KDD dataset is utilized for training. For adversarial attack crafting, the Jacobian Saliency Map Attack (JSMA) algorithm is used, which identifies the feature which can cause maximum change to the benign samples with minimum added perturbation. To check the effectiveness of the proposed adversarial scheme, the results are compared with a deep neural network which indicates that RNN-ADV performs better in terms of accuracy, precision, recall, F1 score and training epochs.en_UK
dc.language.isoenen_UK
dc.publisherMDPI AGen_UK
dc.relationQureshi AUH, Larijani H, Yousefi M, Adeel A & Mtetwa N (2020) An Adversarial Approach for Intrusion Detection Systems Using Jacobian Saliency Map Attacks (JSMA) Algorithm. <i>Computers</i>, 9 (3), Art. No.: 58. https://doi.org/10.3390/computers9030058en_UK
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectintrusion detectionen_UK
dc.subjectadversarial attacksen_UK
dc.subjectJ SMAen_UK
dc.subjectNSL-KDDen_UK
dc.subjectnetwork securityen_UK
dc.titleAn Adversarial Approach for Intrusion Detection Systems Using Jacobian Saliency Map Attacks (JSMA) Algorithmen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/computers9030058en_UK
dc.citation.jtitleComputersen_UK
dc.citation.issn2073-431Xen_UK
dc.citation.volume9en_UK
dc.citation.issue3en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailahsan.adeel1@stir.ac.uken_UK
dc.citation.date20/07/2020en_UK
dc.contributor.affiliationGlasgow Caledonian Universityen_UK
dc.contributor.affiliationGlasgow Caledonian Universityen_UK
dc.contributor.affiliationGlasgow Caledonian Universityen_UK
dc.contributor.affiliationUniversity of Wolverhamptonen_UK
dc.contributor.affiliationBarclays Bank Plcen_UK
dc.identifier.isiWOS:000578132600001en_UK
dc.identifier.scopusid2-s2.0-85089488922en_UK
dc.identifier.wtid2090111en_UK
dc.contributor.orcid0000-0002-6826-207Xen_UK
dc.date.accepted2020-07-15en_UK
dcterms.dateAccepted2020-07-15en_UK
dc.date.filedepositdate2025-03-07en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorQureshi, Ayyaz Ul Haq|en_UK
local.rioxx.authorLarijani, Hadi|0000-0002-6826-207Xen_UK
local.rioxx.authorYousefi, Mehdi|en_UK
local.rioxx.authorAdeel, Ahsan|en_UK
local.rioxx.authorMtetwa, Nhamoinesu|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-03-07en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-03-07|en_UK
local.rioxx.filenamecomputers-09-00058-v2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2073-431Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
computers-09-00058-v2.pdfFulltext - Published Version1.08 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.