Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36839
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexander E Ien_UK
dc.contributor.authorCallan, Jamesen_UK
dc.contributor.authorEven-Mendoza, Karineen_UK
dc.contributor.authorGeiger, Alinaen_UK
dc.contributor.authorHanna, Carolen_UK
dc.contributor.authorPetke, Justynaen_UK
dc.contributor.authorSarro, Federicaen_UK
dc.contributor.authorSobania, Dominiken_UK
dc.date.accessioned2025-03-11T01:47:39Z-
dc.date.available2025-03-11T01:47:39Z-
dc.date.issued2025-01-21en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36839-
dc.description.abstractEver since the first large language models (LLMs) have become available, both academics and practitioners have used them to aid software engineering tasks. However, little research as yet has been done in combining search-based software engineering (SBSE) and LLMs. In this paper, we evaluate the use of LLMs as mutation operators for genetic improvement (GI), an SBSE approach, to improve the GI search process. In a preliminary work, we explored the feasibility of combining the Gin Java GI toolkit with OpenAI LLMs in order to generate an edit for the JCodec tool. Here we extend this investigation involving three LLMs and three types of prompt, and five real-world software projects. We sample the edits at random, as well as using local search. We also conducted a qualitative analysis to understand why LLM-generated code edits break as part of our evaluation. Our results show that, compared with conventional statement GI edits, LLMs produce fewer unique edits, but these compile and pass tests more often, with the OpenAI model finding test-passing edits 77% of the time. The OpenAI and Mistral LLMs are roughly equal in finding the best run-time improvements. Simpler prompts are more successful than those providing more context and examples. The qualitative analysis reveals a wide variety of areas where LLMs typically fail to produce valid edits commonly including inconsistent formatting, generating non-Java syntax, or refusing to provide a solution.en_UK
dc.language.isoenen_UK
dc.publisherBMCen_UK
dc.relationBrownlee AEI, Callan J, Even-Mendoza K, Geiger A, Hanna C, Petke J, Sarro F & Sobania D (2025) Large Language Model Based Mutations in Genetic Improvement. <i>Automated Software Engineering</i>, 32 (15). https://doi.org/10.1007/s10515-024-00473-6en_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectLarge language modelsen_UK
dc.subjectGenetic imporvementen_UK
dc.titleLarge Language Model Based Mutations in Genetic Improvementen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s10515-024-00473-6en_UK
dc.identifier.pmid39850632en_UK
dc.citation.jtitleAutomated Software Engineeringen_UK
dc.citation.issn1573-7535en_UK
dc.citation.issn0928-8910en_UK
dc.citation.volume32en_UK
dc.citation.issue15en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commission (Horizon Europe)en_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.citation.date21/01/2025en_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationKing's College Londonen_UK
dc.contributor.affiliationJohannes Gutenberg University of Mainzen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationJohannes Gutenberg University of Mainzen_UK
dc.identifier.isiWOS:001401213600001en_UK
dc.identifier.wtid2054961en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.date.accepted2024-10-08en_UK
dcterms.dateAccepted2024-10-08en_UK
dc.date.filedepositdate2024-10-08en_UK
rioxxterms.apcpaiden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBrownlee, Alexander E I|0000-0003-2892-5059en_UK
local.rioxx.authorCallan, James|en_UK
local.rioxx.authorEven-Mendoza, Karine|en_UK
local.rioxx.authorGeiger, Alina|en_UK
local.rioxx.authorHanna, Carol|en_UK
local.rioxx.authorPetke, Justyna|en_UK
local.rioxx.authorSarro, Federica|en_UK
local.rioxx.authorSobania, Dominik|en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon Europe)|en_UK
local.rioxx.freetoreaddate2025-01-27en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-01-27|en_UK
local.rioxx.filenames10515-024-00473-6.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1573-7535en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
s10515-024-00473-6.pdfFulltext - Published Version2.17 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.