Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorRumble, Terien_UK
dc.contributor.authorGoutcher, Rossen_UK
dc.contributor.authorHibbard, Paulen_UK
dc.contributor.authorDonoghue, Marken_UK
dc.contributor.authorHarvey, Danen_UK
dc.date.accessioned2025-03-11T01:50:14Z-
dc.date.available2025-03-11T01:50:14Z-
dc.date.issued2024-11-23en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36844-
dc.description.abstractMonocular pixel level depth estimation requires an algorithm to label every pixel in an image with its estimated distance from the camera. The task is more challenging than binocular depth estimation, where two cameras fixed a small distance apart are used. Algorithms that combine depth estimation with pixel level semantic segmentation show improved performance but present the practical challenge of requiring a dataset that is annotated at pixel level with both class labels and depth values. This paper presents a new convolutional neural network architecture capable of simultaneous monocular depth estimation and semantic segmentation and shows how synthetic data generated using computer games technology can be used to train such models. The algorithm performs at over 98% accuracy on the segmentation task and 88% on the depth estimation task.en_UK
dc.language.isoenen_UK
dc.publisherSCITEPRESS - Science and Technology Publicationsen_UK
dc.relationSwingler K, Rumble T, Goutcher R, Hibbard P, Donoghue M & Harvey D (2024) Combined Depth and Semantic Segmentation from Synthetic Data and a W-Net Architecture. In: volume 1. 16th International Conference on Neural Computation Theory and Applications, Porto, Portugal, 20.11.2024-22.11.2024. SCITEPRESS - Science and Technology Publications, pp. 413-422. https://doi.org/10.5220/0012877500003837en_UK
dc.rightsPaper published under CC license (CC BY-NC-ND 4.0) in Proceedings of the 16th International Joint Conference on Computational Intelligence (IJCCI 2024), pages 413-422 ISBN: 978-989-758-721-4; ISSN: 2184-3236 Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.titleCombined Depth and Semantic Segmentation from Synthetic Data and a W-Net Architectureen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.5220/0012877500003837en_UK
dc.citation.volume1en_UK
dc.citation.spage413en_UK
dc.citation.epage422en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderDefence Science and Technology Laboratoryen_UK
dc.author.emailkevin.swingler@stir.ac.uken_UK
dc.citation.conferencedates2024-11-20 - 2024-11-22en_UK
dc.citation.conferencelocationPorto, Portugalen_UK
dc.citation.conferencename16th International Conference on Neural Computation Theory and Applicationsen_UK
dc.citation.date23/11/2024en_UK
dc.citation.isbn9789897587214en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationPsychologyen_UK
dc.identifier.scopusid2-s2.0-85211452274en_UK
dc.identifier.wtid2074302en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.contributor.orcid0000-0002-0471-8373en_UK
dc.date.accepted2024-07-31en_UK
dcterms.dateAccepted2024-07-31en_UK
dc.date.filedepositdate2024-11-25en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorRumble, Teri|en_UK
local.rioxx.authorGoutcher, Ross|0000-0002-0471-8373en_UK
local.rioxx.authorHibbard, Paul|en_UK
local.rioxx.authorDonoghue, Mark|en_UK
local.rioxx.authorHarvey, Dan|en_UK
local.rioxx.projectProject ID unknown|Defence Science and Technology Laboratory|en_UK
local.rioxx.freetoreaddate2024-12-16en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2024-12-16|en_UK
local.rioxx.filename128775.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9789897587214en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
128775.pdfFulltext - Published Version731.67 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.