Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36952
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRafiq, Muhammaden_UK
dc.contributor.authorAli, Hazraten_UK
dc.contributor.authorMujtaba, Ghulamen_UK
dc.contributor.authorShah, Zubairen_UK
dc.contributor.authorAzmat, Shoaiben_UK
dc.date.accessioned2025-04-02T00:02:48Z-
dc.date.available2025-04-02T00:02:48Z-
dc.date.issued2025-12-11en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36952-
dc.description.abstractDeep learning-based computer-aided diagnosis (CAD) of medical images requires large datasets. However, the lack of large publicly available labelled datasets limits the development of deep learning-based CAD systems. Generative Adversarial Networks (GANs), in particular, CycleGAN, can be used to generate new cross-domain images without paired training data. However, most CycleGAN-based synthesis methods lack the potential to overcome alignment and asymmetry between the input and generated data. We propose a two-stage technique for the synthesis of abdominal MRI using cross-modality translation of abdominal CT. We show that the synthetic data can help improve the performance of the liver segmentation network. We increase the number of abdominal MRI images through cross-modality image transformation of unpaired CT images using a CycleGAN inspired deformation invariant network called EssNet. Subsequently, we combine the synthetic MRI images with the original MRI images and use them to improve the accuracy of the U-Net on a liver segmentation task. We train the U-Net on real MRI images and then on real and synthetic MRI images. Consequently, by comparing both scenarios, we achieve an improvement in the performance of U-Net. In summary, the improvement achieved in the Intersection over Union (IoU) is 1.17%. The results show the potential to address the data scarcity challenge in medical imaging.en_UK
dc.language.isoenen_UK
dc.publisherInforma UK Limiteden_UK
dc.relationRafiq M, Ali H, Mujtaba G, Shah Z & Azmat S (2025) Cross modality medical image synthesis for improving liver segmentation. <i>Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization</i>, 13 (1). https://doi.org/10.1080/21681163.2025.2476702en_UK
dc.rights© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectComputer aided diagnosisen_UK
dc.subjectCycleGANen_UK
dc.subjectmedical imagingen_UK
dc.subjectMRIen_UK
dc.subjectsegmentationen_UK
dc.titleCross modality medical image synthesis for improving liver segmentationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1080/21681163.2025.2476702en_UK
dc.citation.jtitleComputer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualizationen_UK
dc.citation.issn2168-1171en_UK
dc.citation.issn2168-1163en_UK
dc.citation.volume13en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailali.hazrat@stir.ac.uken_UK
dc.citation.date11/03/2025en_UK
dc.contributor.affiliationCOMSATS Institute of ITen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationCOMSATS Institute of ITen_UK
dc.contributor.affiliationHamad Bin Khalifa Universityen_UK
dc.contributor.affiliationCOMSATS Institute of ITen_UK
dc.identifier.isiWOS:001441714500001en_UK
dc.identifier.wtid2113641en_UK
dc.contributor.orcid0000-0003-3058-5794en_UK
dc.date.accepted2025-03-01en_UK
dcterms.dateAccepted2025-03-01en_UK
dc.date.filedepositdate2025-03-26en_UK
rioxxterms.apcpaiden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorRafiq, Muhammad|en_UK
local.rioxx.authorAli, Hazrat|0000-0003-3058-5794en_UK
local.rioxx.authorMujtaba, Ghulam|en_UK
local.rioxx.authorShah, Zubair|en_UK
local.rioxx.authorAzmat, Shoaib|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-03-27en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-03-27|en_UK
local.rioxx.filenameCross modality medical image synthesis for improving liver segmentation.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2168-1171en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Cross modality medical image synthesis for improving liver segmentation.pdfFulltext - Published Version7.08 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.