Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36959
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcMillan, Daviden_UK
dc.contributor.authorZiadat, Salemen_UK
dc.date.accessioned2025-04-02T00:06:31Z-
dc.date.available2025-04-02T00:06:31Z-
dc.date.issued2025-04en_UK
dc.identifier.other105550en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36959-
dc.description.abstractThis paper examines the ability of the oil market variance risk premium (VRP) to predict both financial and key macroeconomic series. Interest in understanding the movement of such variables increasingly involves considering measures of investor risk, for which the VRP, that incorporates both implied and realised variance, has recently come to the fore. It is well established that oil price movement impacts both the stock market and wider economy and thus, we examine whether this is also true of the oil VRP. Using monthly US data over the period from 2009 to 2021, we demonstrate the nature of oil VRP predictive power for oil and stock returns, as well as output growth, unemployment, and inflation. Of notable interest, while predictability from the oil VRP series dominates at the one-month horizon and (largely) wanes at over longer time periods, the reverse is found for the stock VRP. These results are robust to the inclusion of additional, established, predictor variables. This indicates that the impact of oil market risk has a more immediate effect on both the stock market and economy, with stock market risk reflecting longer term considerations. A simple out-of-sample exercise supports the view that the inclusion of oil VRP improves forecasts over alternative models that exclude this series.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationMcMillan D & Ziadat S (2025) The Predictive Power of the Oil Variance Risk Premium. <i>Resources Policy</i>, 103, Art. No.: 105550. https://doi.org/10.1016/j.resourpol.2025.105550en_UK
dc.rightsThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You are not required to obtain permission to reuse this article.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectOilen_UK
dc.subjectVRPen_UK
dc.subjectPredictabilityen_UK
dc.subjectOutputen_UK
dc.subjectStocksen_UK
dc.titleThe Predictive Power of the Oil Variance Risk Premiumen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.resourpol.2025.105550en_UK
dc.citation.jtitleResources Policyen_UK
dc.citation.issn0301-4207en_UK
dc.citation.volume103en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emaildavid.mcmillan@stir.ac.uken_UK
dc.citation.date20/03/2025en_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationUniversity of Jordanen_UK
dc.identifier.wtid2109751en_UK
dc.contributor.orcid0000-0002-5891-4193en_UK
dc.date.accepted2025-03-12en_UK
dcterms.dateAccepted2025-03-12en_UK
dc.date.filedepositdate2025-03-17en_UK
rioxxterms.apcpaiden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMcMillan, David|0000-0002-5891-4193en_UK
local.rioxx.authorZiadat, Salem|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-03-25en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-03-25|en_UK
local.rioxx.filename1-s2.0-S0301420725000923-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0301-4207en_UK
Appears in Collections:Accounting and Finance Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0301420725000923-main.pdfFulltext - Published Version1.18 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.