Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKent, Rayen_UK
dc.date.accessioned2014-02-22T00:32:47Z-
dc.date.available2014-02-22T00:32:47Z-
dc.date.issued2009en_UK
dc.identifier.urihttp://hdl.handle.net/1893/816-
dc.description.abstractIn ‘Rethinking data analysis (1) The limitations of frequentist approaches’ (Kent 2008) it was argued that standard, frequentist statistics were developed for purposes entirely other than for the analysis of survey data; when applied in this context, the assumptions being made and the limitations of the statistical procedures are commonly ignored. This article examines ways of approaching the analysis of datasets that can be seen as viable alternatives. It reviews Bayesian statistics, configurational and fuzzy set analysis, association rules in data mining, neural network analysis, chaos theory and the theory of the tipping point. Each of these approaches has its own limitations and not one of them can or should be seen as a total replacement for frequentist approaches. Rather, they are alternatives that should be considered when frequentist approaches are not appropriate or when they do not seem to be adequate to the task of finding patterns in a dataseten_UK
dc.language.isoenen_UK
dc.publisherWorld Advertising Research Centeren_UK
dc.relationKent R (2009) Rethinking data analysis (2): Alternatives to frequentist approaches. International Journal of Market Research, 51 (2), pp. 181-202. https://doi.org/10.2501/S1470785309200414en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectBayesian statistical decision theoryen_UK
dc.subjectData analysisen_UK
dc.subjectStatisticsen_UK
dc.subjectResearch Statisticsen_UK
dc.titleRethinking data analysis (2): Alternatives to frequentist approachesen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-12-01en_UK
dc.rights.embargoreason[Rethinking data analysis2.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.2501/S1470785309200414en_UK
dc.citation.jtitleInternational Journal of Market Researchen_UK
dc.citation.issn1470-7853en_UK
dc.citation.volume51en_UK
dc.citation.issue2en_UK
dc.citation.spage181en_UK
dc.citation.epage202en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailr.a.kent@stir.ac.uken_UK
dc.identifier.isiWOS:000264303500006en_UK
dc.identifier.scopusid2-s2.0-63049133454en_UK
dc.identifier.wtid818259en_UK
dcterms.dateAccepted2009-12-31en_UK
dc.date.filedepositdate2009-02-17en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorKent, Ray|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameRethinking data analysis2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1470-7853en_UK
Appears in Collections:Marketing and Retail Journal Articles

Files in This Item:
File Description SizeFormat 
Rethinking data analysis2.pdfFulltext - Accepted Version145.95 kBAdobe PDFUnder Embargo until 3000-12-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.