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Background: The predominance of specific bacteria such as adherent-invasive Escherichia coli (AIEC) within the
Crohn's disease (CD) intestine remains poorly understood with little evidence uncovered to support a selective
pressure underlying their presence. Intestinal ethanolamine is however readily accessible during periods of
intestinal inflammation, and enables pathogens to outcompete the host microbiota under such circumstances.
Methods: Quantitative RT-PCR (qRT-PCR) to determine expression of genes central to ethanolaminemetabolism;
transmission electronmicroscopy to detect presence of bacterial microcompartments (MCPs); in vitro infections
of bothmurine and humanmacrophage cell lines examining intracellular replication of the AIEC-type strain LF82
and clinical E. coli isolates in the presence of ethanolamine; determination of E. coli ethanolamine utilization (eut)
operon transcription in faecal samples from healthy patients, patients with active CD and the same patients in
remission following treatment.
Results: Growth on the intestinal short chain fatty acid propionic acid (PA) stimulates significantly increased tran-
scription of the eut operon (fold change relative to glucose: N16.9; p-value b.01). Additionally ethanolamine was
accessible to intra-macrophage AIEC and stimulated significant increases in growth intracellularly when it was
added extracellularly at concentrations comparable to those in the human intestine. Finally, qRT-PCR indicated
that expression of the E. coli eut operon was increased in children with active CD compared to healthy controls
(fold change increase: N4.72; P b .02). After clinical remission post-exclusive enteral nutrition treatment, the
sameCDpatients exhibited significantly reduced eut expression (Pre vs Post fold change decrease:N15.64; P b .01).
Interpretation: Our data indicates a role for ethanolamine metabolism in selecting for AIEC that are consistently
overrepresented in the CD intestine. The increased E. colimetabolism of ethanolamine seen in the intestine during
active CD, and its decrease during remission, indicates ethanolamine usemay be a key factor in shaping the intes-
tinal microbiome in CD patients, particularly during times of inflammation.
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K008005/1&BB/P003281/1 toDMW;by a Tenovus Scotland grant toMJO; byGlasgowChildren'sHospital Charity,
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1. Introduction

Adherent-invasive E. coli (AIEC) are over-represented in the ilealmi-
crobiota of Crohn's disease (CD) patients, being present in 51.9% of mu-
cosal samples from CD patients compared with 16.7% in healthy
controls [1–5]. Alterations in the gutmicrobiota composition of patients
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Adherent-invasive Escherichia coli (AIEC) have been implicated in
the aetiology of Crohn's disease (CD), being isolated in consis-
tently greater numbers fromCDpatients compared to healthy con-
trols. The reasons underlying this association however are poorly
understood. Additionally the ability of AIEC to replicate to high
numbers within macrophages indicated that a readily available
carbon source must be present in the intestine.

Added value of this study

In this study we have determined that the intestinal short chain
fatty acid propionic acid acts as a signal for AIEC to alter their me-
tabolism and increase their use of ethanolamine, an intestinal me-
tabolite known to be used by pathogens during times of
inflammation. To date the rapid replication of AIEC in macro-
phages has been unexplained, but we have shown here that this
rapid intracellular growth can be facilitated by the presence of ex-
tracellular levels of ethanolamine comparable to those in the
human intestine. Lastly, we have shown the clinical relevance of
our findings by detailing the increased metabolism of ethanol-
amine by E. coli in pediatric patients with active CD, and a signifi-
cant reduction upon remission in the same patients.

Implications of all the available evidence

Our study has revealed an important role for PA as a signalingmol-
ecule for AIEC, allowing it to adapt to life in the inflamed CD intes-
tine through the use of ethanolamine. The ability to utilize
ethanolamine, which is released during times of intestinal inflam-
mation, renders AIEC able to out-compete commensal microbes
under the conditions seen in CD. The increased E. colimetabolism
of ethanolamine seen in pediatric CD patients with active disease,
when compared to healthy controls and those in remission,
strongly suggests that ethanolamine is a key metabolite in the
shaping CD microbiome.
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suffering from CD are well reported with the majority of studies
reporting an increase in the abundance of Proteobacteria, of which
AIEC aremembers, and a decrease in Firmicutes [6,7].While AIEC strains
harbor genetic similarity to extra-intestinal pathogenic E. coli (ExPEC) in
terms of phylogenetic origin and virulence genotype, the factors under-
lying their virulence have proved more difficult to identify [8]. In addi-
tion, the discovery of AIEC strains across all five major diverse
phylogroups of E. colimeans that an overarching explanation for the or-
igin and virulence of AIEC has remained out of reach.

Intestinal pathogens utilize various mechanisms to outcompete the
host intestinal microbiota, thus increasing their ability to persist and
cause disease. Thesemechanisms include induction of inflammation, di-
rect or indirect killing of commensals, or exploitation of alternative car-
bon sources [9–11]. Intestinal pathogens use a variety of carbon sources
during infection: Escherichia coli and Clostridium perfringens using sialic
acid [12,13]; Enterohaemorraghic E. coli (EHEC) consume galactose,
hexuronates and ribose [14]; while Yersinia enterocolita and Salmonella
enterica serovar Typhimurium use the adenosyl-cobalamin, 1,2-
Propanediol degradation (1,2-PD; pdu) and tetrathionate operons in
concert to catabolize 1,2-PD under the anaerobic conditions found in
the gut [15]. Recent evidence also suggested a role for 1,2-PD metabo-
lism during adherent-invasive E. coli (AIEC) colonization with the pdu
operon shown to be overrepresented within this CD-associated
pathotype and possibly playing a role in driving systemic inflammation,
although other work has questioned this link [16–18].

Alongwith 1,2-PD, phosphatidylethanolamine, a ubiquitous compo-
nent of host cell membranes, is abundant in the inflamed intestine and
is readily hydrolysed into ethanolamine and glycerol [19,20]. Ethanol-
amine can be used as a carbon and nitrogen source by a variety of intes-
tinal pathogens such as S. Typhimurium, enterohaemorrhagic E. coli
(EHEC), Enterococcus faecalis, Listeriamonocytogenes and Clostridium dif-
ficile [21–25]. Inflammation associated with infection renders 1,2-PD
and ethanolamine available for metabolism as reduced tetrathionate is
released allowing its use as a terminal electron acceptor for growth on
these carbon sources. The inflammatory environment of the CD intes-
tine similarly offers access to these alternative carbon sources as
tetrathionate is again released and available to facilitate 1,2-PD and eth-
anolamine metabolism [21,23,26,27]. Although critical to outgrowth of
intestinal pathogens during inflammation,many bacteria cannot readily
use these carbon sources [17,22,28].

Recently, we have shown that exposure of AIEC to propionic acid
(PA), an abundant intestinal short chain fatty acid (SCFA), results in
modulation of the key phenotypic traits of the AIEC pathotype, render-
ing PA-exposed bacteria more adherent, invasive and persistent [29].
This is in stark contrast to the antimicrobial and anti-virulence effects
PA exerts on other intestinal pathogens such as S. Typhimurium and
Campylobacter spp. [30–38]. Here we show that the intestinal SCFA PA
causes AIEC to significantly increase its ethanolamine metabolism. To
overcome the toxic by-products associated with ethanolamine use,
AIEC synthesize and then excrete bacterial microcompartments
(MCPs). Additionally, ethanolamine added extracellularly to macro-
phages, at concentrations comparable to those of the human intestine,
stimulated rapid intracellular proliferation of AIEC. Finally, we deter-
mined the clinical relevance of these findings, establishing that despite
E. coli numbers remaining unchanged in patients with active CD, etha-
nolamine use was significantly increased. However, ethanolamine me-
tabolism was significantly reduced in these same patients upon
treatment leading to clinical remission.

2. Methods

2.1. Bacterial strains and growth conditions

Strains used in this study are listed in Supplementary Table S1 and
were routinely grown at 37 °C at 180 rpm in Lysogeny broth (LB) or
M9 minimal medium ([20% M9 salts (32 g Na2H2PO42H2O, 12.5 g
NaCl, 2.5 g NH4Cl, 7.5 g KH2PO4 and 400ml H2O], 0.1% trace metal solu-
tion, 0.2 mM MgSO4, 0.02 mM CaCl2, 1 mM thiamine, 0.01% 5 g/l FeCl3,
0.01% 6.5 g/l ethylenediaminetetraacetic acid (EDTA), 0.1% taurocholic
acid and dH2O) supplemented with D-glucose (10 mM), sodium propi-
onate (PA; 20 mM), 1,2-propanediol (1,2-PD; 20 mM) or ethanolamine
(ethanolamine; 20 mM). Strains for infection were grown overnight in
10 ml cultures of RPMI-1640 supplemented with 3% fetal calf serum
(FCS; heat-inactivated) and 2 mM L-glutamine before being back-
diluted the following morning into 10 ml of the same media. These
were then grown at 37 °C at 180 rpm to an optical density at 600 nm
(OD600) of 0.6 before further dilution to give a final multiplicity of infec-
tion (MOI) of 10. For transmission electron microscopy (TEM), isolates
were grown in No-Carbon-E (NCE) media supplemented with 20 mM
glucose or PA at 37 °C, to an OD600 of 0.6. For real-time PCR (qRT-
PCR), bacteria were grown aerobically in NCE media [39]. Twenty milli-
molar PA, 1,2-PD, ethanolamine or D-glucose were added with 200 nM
cyano-cobalamin to act as an electron acceptor [40]. Cultures were
grown overnight in LB, washed three times in NCE media with no car-
bon source added, and inoculated 1:100 into 10 ml NCE media contain-
ing each respective carbon source. Cultures were grown until mid-log
phase (OD600 of 0.6) and used for RNA-extraction. eutR deletion strains
were generated by Lambda red-mediated mutagenesis as previously
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described [41] using the primers eutR KO For and eutR KO Rev (Supple-
mentary Table S2). eutR deficient strains were confirmed using the
primers ΔeutR Check For and ΔeutR Check Rev All chemical suppliers
are listed in Supplementary Table S4.

Clinical isolates (B94, B115, B122 and B125)were from the “Bacteria
in Inflammatory bowel disease in Scottish Children Undergoing Investi-
gation before Treatment” (BISCUIT) study [42]. All isolates were recov-
ered from patients with Crohn's disease. The median (range) age was
13.7 (11.2 to 15.2), height z-score was −0.4 (−2.0 to 0.2), weight
z-score was −0.7 (−3.4 to −0.1), and BMI z-score was −1.3 (−4.0 to
0.4). Symptom duration prior to diagnosis was median 7.5 months
[5 to 12]. 50% had granulomas present on initial histology. Phenotypes
by Paris criteria [43] at diagnosis were: B94- colonic, non-stricturing/
non-penetrating (L2, B1); B115- colonic, non-stricturing/non-penetrat-
ing (L2, B1); B122- ileocolonic, stricturing (L3, B2); B125- ileocolonic,
non-stricturing/non-penetrating (L3, B1). This study is publically regis-
tered on the United Kingdom Clinical Research Network Portfolio
(9633).

2.2. Transmission electron microscopy

Five microlitre suspension droplets were placed onto the glow
discharged surface of 300 mesh Formvar/carbon coated nickel grids
and left to settle for 2 min. Grids were then placed sample side down
onto a 30 μl droplet of 2% ammonium molybdate for 30 s prior to air-
drying. Samples were viewed on a FEI Tecnai T20 TEM running at
200 kV and images captured using a GATAN Multiscan 794 camera
and GATAN Digital Imaging software (DM4 converted to TIFF).

2.3. Total RNA extraction

Bacterial cultures were grown as above and mixed with two vol-
umes of RNAprotect reagent, before incubating for 5min at room tem-
perature. Total RNA was extracted and genomic DNA removed as
described previously [44].

2.4. Patient faecal samples

The whole bowel movement was collected, stored in a cool bag
under anaerobic conditions (Oxoid™ AnaeroGen™) and transferred to
the laboratory within three hours of defecation [45]. The whole sample
was homogenized with mechanical kneading and aliquots were stored
in RNAlater at−70 °C.

Samples were collected from 10 newly diagnosed, treatment naïve
children (11.4 (Q1:8.5, Q3:15.3 years; 5 female) with active CD under-
going an 8-week induction treatment with exclusive enteral nutrition
(EEN) with a polymeric casein-based liquid feed (Modulen) as de-
scribed previously [46]. No other food was allowed. A first sample was
collected before EEN initiation and another at the end of the eight-
week treatment. A single faecal samplewas collected from healthy chil-
dren with no family history of inflammatory bowel disease to serve as a
control group. Children with CD and healthy controls were matched for
age and gender. Participants that had received antibiotics three months
before or during the study were excluded.

Disease activity was monitored during the course of the EEN treat-
ment using the weighted pediatric CD Activity Index (wPCDAI) [47].
Faecal calprotectin (FC), an established marker of colonic inflammation
was measured with the Calpro ELISA kit as described previously (Sup-
plementary Table S3) [48].

2.4.1. Ethics statement
Patients were recruited from the pediatric gastroenterology clinics

at the Royal Hospital for Children, Glasgow and healthy controls from
the same background community using leaflet advertisement. Children
with CD were diagnosed according to the revised Porto criteria [49].
All participants and their carers signed informed consent. The study
was approved by the NHS West of Scotland Research Ethics
Committee (14/WS/1004) and was registered at www.clinicaltrials.
gov (NCT02341248).

2.5. Total RNA extraction from faecal samples

Faecal samples were stored at −80 °C in RNAlater. To extract RNA,
samples were thawed on ice before brief centrifugation to remove
RNAlater. Approximately 250 μg of faecal material was then subjected
to RNA isolation using the RNeasy PowerMicrobiome Kit. RNA quantity
and quality was estimated using a NanoDrop (ThermoFisher Scientific)
spectrophotometer and DNA depletion confirmed through PCR using
16S primers (Supplementary Table S2).

2.6. Quantitative real-time PCR (qRT-PCR)

cDNA was generated from total RNA using an Affinity Script cDNA
multi-temp Synthesis Kit following the manufacturer's instructions.
Levels of transcription were analysed by qRT-PCR using PerfeCTa SYBR
Green FastMix. Individual reactions were performed in triplicate within
each of three biological replicates. The 16S rRNA gene was used to
normalize the results. RT-PCR reactions were carried out using the CFX
Connect Real-Time PCR Detection System (BIO-RAD Laboratories, Inc.)
according to the manufacturer's specifications and the data were
analysed according to the 2-ΔΔCTmethod [50]. All primers used are listed
in Supplementary Table S2.

2.7. Cell culture and maintenance

The RAW264.7 murine macrophage cell line obtained from the
American Type Culture Collection (ATCC) was maintained in RPMI-
1640medium supplemented with 10% FCS, 2mM L-glutamine and pen-
icillin/streptomycin. THP-1 (ECACC 88081201) cells were obtained
from the European Collection of Authenticated Cell Cultures (ECACC)
as growing cultures. Cells were maintained in 10% FCS, 2 mM L-gluta-
mine and penicillin/streptomycin. All cells were maintained at 37 °C
and 5% CO2 with regular media changes.

2.8. Cell culture infection

Both RAW264.7 macrophages and THP-1 cells were seeded at
1 × 105 cells per well of a 24-well plate 48 h prior to infection. THP-1
cells were differentiated for 24 h in the presence of 200 nM phorbol
12-myristate 13-acetate (PMA) to activate macrophages. After activa-
tion, the mediumwas removed, and the cells washed prior to infection
to remove dead or non-adherent cells and left for a further 24 h.
RAW264.7 macrophages were treated with 100 ng/ml lipopolysaccha-
ride to induce an activated state 24 h after seeding. Infections for both
cell types were carried out in RPMI media supplemented with 3% FCS
and L-glutamate. Infections were carried out at an MOI of 10. After 1 h
the bacteria that had not been internalized were killed by adding 50
µg/ml gentamycin sulfate (Sigma-Aldrich) and the infection allowed
to proceed.

2.9. Statistical analysis

All statistical tests were performed with GraphPad Prism software.
All replicates in this study were biological; that is, repeat experiments
were performed with freshly grown bacterial cultures or mammalian
cell lines, as appropriate. Technical replicates of individual biological
replicates were also conducted, and averaged. Values are represented
as means ± standard deviation. Significance was determined using
t-tests (multiple and individual as indicated in the figure legends) and
ANOVA (one-way or two-way) corrected for multiple comparisons
with a Tukey's post hoc test (as indicated in the figure legends). qRT-
PCR data was log-transformed before statistical analysis. For patient
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samples statistical analyses were preformed using GraphPad Prism,
with data analysed by one-way ANOVA followed by Dunns multiple
comparisons post-test. Values were considered statistically significant
when P values were *P b .05, **P b .01, ***P b .001.

3. Results

3.1. The intestinal short chain fatty acid PA stimulates AIEC degradation of
ethanolamine

We previously observed that pre-exposure of the wild type AIEC
strain LF82 to PA (termed LF82-PA), resulted in a more virulent pheno-
type [29]. Comparing growth of LF82-PA on ethanolamine as a sole car-
bon source relative to wild type LF82, indicated that LF82-PA could
utilize ethanolamine more rapidly resulting in higher biomass (dou-
bling time [OD600nm 0.1 to 0.2] LF82-PA: 2.5 h; LF82: 6.7 h) (Fig. 1). No
difference between the LF82 and LF82-PA strains was noted previously
in rich nutrient media, indicating this was not a universal increase in
growth rate post-PA exposure [29]. Subsequent deletion of eutR, the
regulator of the eut operon, removed the ability of LF82 and LF82-PA
to grow on ethanolamine (Fig. 1). Despite long-term exposure, LF82
was unable to efficiently metabolise the other predominant intestinal
SCFAs, acetate and butyrate, as sole carbon sources (Supplementary
Fig. S1).

3.2. Ethanolamine degradation occurs in bacterial microcompartments
(MCPs)

In the presence of the intestinal SCFA PA, transmission electron mi-
croscopy (TEM) revealed the release of outer membrane vesicles con-
taining pentagonal shapes that we speculated to be MCP containing
vesicles (Fig. 2a). MCPs are utilized by bacteria for growth on 1,2-PD
and ethanolamine as their metabolism releases the toxic by-products
propanol and ethanol that can then be sequestered into theMCP to pro-
tect the bacteria. We first examined the ability of LF82 to express MCPs
from either the eut or pdu operons, which are known to encode MCPs.
Outer membrane vesicles were not detected during growth on glucose
(Fig. 2a).

To further understand the role of MCPs in ethanolaminemetabolism
and their link to intestinal SCFA levels, qRT-PCR examination of the
genes central to PA metabolism (prpB) and MCP production (eutS and
pduC) was undertaken in the presence of the relevant carbon sources.
This revealed that, as expected, transcription of prpBwas highest during
growth on PA (fold change relative to glucose: 24.8; p-value b.0001);
pduCwas highest during growth on 1,2-PD (fold change relative to glu-
cose: 28.2; p-value b.05); and eutSwas highest during growth on etha-
nolamine (fold change relative to glucose: 76.7; p-value b.001).
However, growth on the intestinal SCFA PA stimulated significantly
Fig. 1. PA stimulates AIEC degradation of ethanolamine. Anaerobic growth (OD600nm) of
LF82, LF82-PA and their corresponding eutR knock out mutants in minimal media (NCE)
supplemented with ethanolamine (20 mM), MgSO4 (1 mM), trace metals and sodium
thiosulphate (40 mM). Data were analysed using a two-way ANOVA with Tukey; p b

.001 ***. Only significant differences between LF82 and LF82-PA are shown. There were
no significant differences between mutant strains at any time point.
increased transcription of the eut operon (fold change relative to glu-
cose: N16.9; p-value b.01)while the pdu operonwas not significantly af-
fected by PA presence (fold change relative to glucose: N8.4; p-value
0.79). Therefore exposure of LF82 to PA induces significant metabolic
changes that adapt bacteria to utilize a carbon and nitrogen source read-
ily available in the inflamed intestine.

3.3. Extracellular ethanolamine stimulates increased AIEC intra-
macrophage replication

Rapid intracellular replication in macrophages is a key phenotypic
trait in AIEC [1,3,51]. However the mechanism behind this increased
replication has remained elusive. In order to examine the effect of
human intestinal levels of extracellular ethanolamine on the intra-
macrophage replication of LF82, we infected RAW264.7 macrophages
with LF82 and LF82 that had been exposed to PA (LF82-PA) [22,31]. Sup-
plementation of ethanolamine did not affect replication of wild type
LF82 after 24 h at any concentration (Fig. 3). However, replication of
LF82-PAwithinmacrophages significantly increased in response to eth-
anolamine in a dose dependent manner (Fig. 3). Ethanolamine addition
did not affect replication of the LF82ΔeutR strain or LF82-PAΔeutR,
which are unable to metabolise ethanolamine due to the removal of
the regulator of the ethanolamine utilization operon eutR (Fig. 3).
While RAW264.7 cells are commonly used to study AIEC virulence, to
ensure the observed effects were not specific to murine macrophages
this was repeated within the human monocyte THP-1 cell line where
again ethanolamine significantly increased intracellular replication in
a dose-dependent and eut dependent fashion (supplementary Fig. S2).
Collectively, these data indicate that the intestinal short chain fatty
acid PA induces increased survival and replication of LF82 within mac-
rophages in the presence of concentrations of ethanolamine found in
the human intestine.

3.4. The PA-driven enhanced intracellular replication phenotype ismirrored
in other clinical AIEC isolates

E. coli isolated from intestinal biopsies of pediatric patients with ac-
tive CD were examined for their ability to replicate intracellularly in
macrophages in the presence of extracellular ethanolamine. The charac-
teristics of these isolates has been determined previously with all iso-
lates exhibiting an AIEC phenotype after PA-exposure with an ability
to; adhere to and invade intestinal epithelial cells, replicatewithinmac-
rophages and form biofilms both aerobically and anaerobically [29]. PA
pre-exposure resulted in significantly increased intracellular replication
in comparison to the unexposed wild type in two of four strains, whilst
in the two others the increase was not significant (Supplementary
Fig. S3). The increasing concentrations of ethanolamine significantly in-
creased intracellular replication of isolates B115 and B125 in a dose de-
pendent manner. Due to an inability to metabolise PA, we were unable
to generate an adapted strain of the commensal E. coli F-18 strain. In any
case, F-18 showed a distinct lack of intracellular replication. Collectively,
these data indicate that the intestinal SCFA PA induces increased sur-
vival and replication of LF82 and clinically relevant E. coliwithinmacro-
phages in the presence of physiologically relevant concentrations of
ethanolamine.

3.5. Expression of the eut operon correlates with inflammatory status in pe-
diatric CD patients

Given the significance of ethanolamine utilization in facilitating
in vitro infection by LF82 we examined faecal samples from pediatric
CD patients, before and after treatment, compared to healthy controls
to determine any relevance of the eut operon to disease status. All CD
patients had active disease at treatment initiation (wPCDAI N12.5). By
the end of treatment with exclusive enteral nutrition (EEN), (the first-
line therapy for pediatric CD), 8/10 (80%) of patients had clinically



Fig. 2.Growth on PA stimulates the production of bacterialMCPs for the utilization of ethanolamine as a carbon source. For TEM, cultures of LF82were grown inNCEmedia supplemented
with cobalamin (200 nM) and either (a) glucose or (b) PA, at a final concentration of 20mM. (c) A close upof aMCP-containing outermembrane vesicle froma PA supplemented culture is
shown. qRT-PCR was conducted on LF82 grown in NCE media supplemented with cobalamin (200 nM) and either glucose (G), propionic acid (PA) 1,2-propanediol (1,2-PD) or
ethanolamine (E) at a final concentration of 20 mM. Relative fold change of (d) prpB, (e) pduC and (f) eutSwere measured relative to their expression in the presence of glucose, using
16S rRNA as an internal control. Four independent biological replicates were performed. Data are expressed as relative fold change ± SD and were analysed using a one-way ANOVA
with Tukey; p b .05 *; p b .001 ***.
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improved (wPCDAI decrease N17.5), with 6/10 (60%) of patients having
entered clinical remission (mean wPCDAI treatment start: 42.25 [23.4];
wPCDAI treatment end: 11 [12.4]). Therewas also a significant decrease
in faecal calprotectin levels during the course of treatment from initial
mean values of 1561mg/Kg (SD:596) at the start of treatment, decreas-
ing to 1037 mg/Kg (592, 1614) by the end of EEN (Supplementary
Table S3).

Quantitative RT-PCR (qRT-PCR) indicated an increase in E. coli eutS
expression in children with active CD compared to healthy controls
(Fig. 4; Fold change increase: N4.72; P b .02). A significant decrease in
Fig. 3. Extracellular ethanolamine increases intracellular replication of LF82-PA. Intra-
macrophage (RAW264.7) survival and replication of wild type, PA-adapted, and
LF82ΔeutR at 24 h post-infection with or without ethanolamine supplementation. For
all values, the mean ± SD of three independent biological replicates are shown.
Statistical analyses were preformed using GraphPad Prism, with data analysed by two-
way ANOVA (p b .05 *; p b .01 **; p b .001 ***).
eutS expressionwas observed post-EEN treatment across all CD patients
(Pre vs Post Fig. 4; Fold change decrease: N15.64; P b .01). This drop in
eutS copy number was most significant in patients with reduction in
their faecal calprotectin levels as an indicator of colonic inflammation
(Supplementary Table S3). Subsequent analysis of total E. coli numbers
using 16S gene copy number revealed no significant differences be-
tween healthy controls, CD patients pre-treatment and the same pa-
tients post-treatment (Supplementary Fig. S4). This indicates that the
observed differences in eutS copy number are not due to fluctuating
E. coli levels but due to transcriptional differences.

4. Discussion

The role of AIEC in the pathology of CD has remained an enigma
since the recovery of the first strain from a CD patient nearly 20 years
Fig. 4. qRT-PCR of eutS in healthy patients, active Crohn's disease patients and Crohn's
disease patients following EEN. Ethanolamine utilization was determined by abundance
of eutS transcripts. eutS was amplified using primers designed against LF82. Transcript
levels were normalized to 16S rRNA transcripts. Healthy samples (n = 9); Crohn's
disease samples pre-treatment (CD pre; n = 10); Crohn's disease samples post-
treatment (CD post; n = 10). Crohn's disease samples pre- and post-treatment were
paired. Patients were marked as responders (squares) and non-responders (triangles)
based on their drop in calprotectin levels (Supplementary Table S1). Statistical analyses
were preformed using GraphPad Prism, with data analysed by one-way ANOVA
followed by Dunns multiple comparisons post-test (p b .05 *; p b .01 **).
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ago [52]. Subsequent work indicating their predominance in both CD
and colorectal cancer patients has led to numerous studies looking for
a common denominator linking all distantly related AIEC strains that
are now found widely spread across all E. coli subtypes [53,54]. Here
we present evidence indicating a common intestinal carbon and nitro-
gen source, ethanolamine, can be readily used by the AIEC type strain
LF82 and other AIEC strains isolated from CD patients. The significance
of ethanolamine in AIEC virulence however is three-fold; its utilization
is stimulated by the intestinal short chain fatty acid PA; it is available
to AIEC enabling increased growth within macrophages when added
extracellularly at intestinal concentrations, and its utilization within
the intestine directly correlates with inflammatory status of pediatric
CD patients.

Our previous work indicated that prior-exposure of AIEC to PA re-
sults in a pathogen with enhanced abilities to adhere to and invade in-
testinal epithelial cells, tolerate acidic conditions, form better biofilms
and persist in an animal model of infection [29]. Here we show that
PA pre-exposure also acts as ametabolic signal, stimulating degradation
of ethanolamine. The action of PA as a positive signal for colonization by
AIEC of the inflamed intestine is in stark contrast to that of pathogens
such as Campylobacter spp. and S. Typhimurium,where the high PA con-
centration of the caecum and colon have been shown to represses viru-
lence and colonization [33–38]. This ability to withstand the toxic
effects of PA and use it as a positive inducer of virulence sets AIEC and
a small number of other pathogens such as Mycobacterium tuberculo-
sis/avium apart [55–57].

Notably, after exposure to PA the LF82-PA strain was more
readily able to utilize ethanolamine as a carbon source, resulting in
an increased rate of growth and increased biomass (Fig. 1). This
observation was not surprising, given that growth on PA resulted in
expression of eut (Fig. 2f) but it also enabled LF82-PA to signifi-
cantly increase intra-macrophage replication (Fig. 3). Rapid intra-
macrophage growth is a recognized feature of the AIEC pathotype
[1,3,51] and may play a critical role in facilitating persistence in the
intestine given numbers of macrophages and dendritic cells are in-
creased in the mucosa of CD patients [58]. As ethanolamine is also
more readily available for consumption under these conditions and
our work demonstrates that increased extracellular ethanolamine is
available to AIEC, ethanolamine may be a crucial carbon source in fa-
cilitating AIEC persistence in immune cells in the intestine [21]. Sim-
ilarly, increased intra-macrophage proliferation due to the presence
of extracellular ethanolamine has been demonstrated previously in
S. Typhimurium indicating additional persistence strategies such as
inhibition of programmed cell death may be needed to facilitate
long-term intracellular ethanolamine use [25,59]. The driver for pre-
dominance of AIEC in CD, as opposed to other intestinal enterobacte-
rial pathogens such as S. Typhimurium and Y. enterocolitica, remains
unknown. However the ability of AIEC to positively respond to the
normally antimicrobial SCFA PA may underlie this unique ability.
While other intestinal pathogens are directly inhibited by this potent
antimicrobial, AIEC can utilize PA, incorporate it, and respond to its
presence [29,33–38]. Therefore, in the presence of PA, upregulation
of the eut operon may give AIEC a distinct competitive advantage
in the inflamed, ethanolamine replete CD intestine. Whether this ca-
pability is conserved across a wide range of E. coli strains or is dis-
tinct to AIEC is not yet known, but if widely conserved it may
explain why E. coli as opposed to other bacteria dominate the CD
microbiome. Indeed, utilization of ethanolamine may benefit AIEC
through induction of a positive feedback loop whereby ethanolamine
use leads to AIEC proliferation resulting in further inflammation and
ethanolamine release.

We observed the secretion of MCPs inside OMVs during growth on
PA (Fig. 2b and c). The suggested association between AIEC and the
1,2-PD utilization operon (pdu) and the closemetabolic relationship be-
tween 1,2-PD degradation and PA production lead us to hypothesize
that upregulation of the pdu operon would be responsible for their
production [16,17,60]. Surprisingly, our analysis indicated these PA-
induced MCPs were encoded by the eut operon which allows for degra-
dation of ethanolamine (Fig. 2f). Ethanolamine confers on a number of
pathogens an important metabolic advantage in out-competing the
host microbiota during episodes of inflammation [21–24]. The eut de-
rivedMCP is known to enhance E. coli and S. enterica proliferation in di-
verse environments, including on food products, in Caenorhabditis
elegansmodels of infection, during growth on bovine intestinal content,
and in amurinemodel of infection [21,22,24,27]. It is therefore plausible
that PA exposure provides AIEC with an enhanced ability to survive
within regions of the intestinal tract that other pathogens cannot, sig-
naling for upregulation of the genes necessary for ethanolamine
metabolism.

As our in vitrofindings indicated that eutmetabolismconferred a sig-
nificant growth advantage on AIEC in the context of infection, we next
sought to investigate the significance of this in the context of AIEC pre-
dominance in CD patients. Using faecal samples taken over an eight
week period we determined the levels of eut expression in patients
both before and after induction treatment and compared these to
healthy controls. All CD patients had undertaken an exclusive enteral
nutrition (EEN) diet for the eight-week period after the initial sample
was taken and faecal calprotectin levels were used to assess changes
in colonic inflammation and to assign patients to either responder or
non-responder groups (Supplementary Table S3). eutS levels were in-
creased by N4.7 fold in CD patients compared to healthy controls indi-
cating a significant increase in ethanolamine use in these patients
(Fig. 4). However this effect was reversed by EEN treatment with both
inflammation and eutS levels significantly reduced (N15.6 fold) and
eutS levels not being significantly different post-treatment to healthy
controls. While the availability of ethanolamine during inflammation
is not surprising given previous reports, the direct correlation between
CD activity and E. coli eutS transcript levels was unexpected. Samples
from those patients who responded best to the treatment were shown
to have the most significant reduction in eutS levels, further indicating
a correlation between ethanolamine use and E. coli in the CD intestine.
This is possibly explained by the observed drop in intestinal propionate
levels seen after EEN treatment [45]. This reduction in the signaling
molecule for AIEC metabolism of ethanolamine would lead to the type
of eut transcription drop observed here. Further validation of this in an-
other dataset of patients that have undergone a different mode of treat-
ment induction would be a useful extension of this work.

This work highlights a new AIEC phenotypic trait that exhibits a di-
rect correlationwith severity of CD.Monitoring of eut expressionwithin
the CD intestine shows potential as a useful biomarker for monitoring
severity of CD and overgrowth of E. coli in CD, perhaps predicting useful
interventions using direct targeting of E. coli to alleviate disease [45].
This work also raises the possibility that other pathogens associated
with CD may utilize similar metabolic strategies.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.03.071.
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