
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17953  | https://doi.org/10.1038/s41598-024-68976-6

www.nature.com/scientificreports

Task‑dependent contribution 
to edge‑based versus region‑based 
texture perception
Elena Gheorghiu 1*, Cassandra Diggiss 2 & Frederick A. A. Kingdom 2

Texture segregation studies indicate that some types of textures are processed by edge-based and 
others by region-based mechanisms. However, studies employing nominally edge-based textures 
have found evidence for region-based processing mechanisms when the task was to detect rather 
than segregate the textures. Here we investigate directly whether the nature of the task determines 
if region-based or edge-based mechanisms are involved in texture perception. Stimuli consisted of 
randomly positioned Gabor micropattern texture arrays with five types of modulation: orientation 
modulation, orientation variance modulation, luminance modulation, contrast modulation and 
contrast variance modulation (CVM). There were four modulation frequencies: 0.1, 0.2, 0.4 and 
0.8 cpd. Each modulation type was defined by three types of waveforms: sinewave (SN) with 
its smooth variations, square-wave (SQ) and cusp-wave (CS) with its sharp texture edges. The 
CS waveform was constructed by removing a sinewave from an equal amplitude square-wave. 
Participants performed two tasks: detection in which participants selected which of two stimuli 
contained the modulation and discrimination in which participants indicated which of two textures 
had a different modulation orientation. Our results indicate that threshold amplitudes in the detection 
task followed the ordering SQ < SN < CS across all spatial frequencies, consistent with detection being 
mediated by the overall energy in the stimulus and hence region based. With the discrimination task 
at low texture spatial frequencies and with CVM textures at all spatial frequencies the order was 
CS ≤ SQ with both < SN, consistent with being edge-based. We modeled the data by estimating the 
spatial frequency of a Difference of Gaussian filter that gave the largest peak amplitude response to 
the data. We found that the peak amplitude was lower for detection than discrimination across all 
texture types except for the CVM texture. We conclude that task requirements are critical to whether 
edges or regions underpin texture processing.
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Texture is an integral feature of the natural world, providing information about the structure of natural and syn-
thetic objects and surfaces. Textures can vary across space in many visual dimensions such as orientation, spatial 
frequency, luminance, contrast, motion and depth, and such variations (or modulations) can provide important 
information about the location of objects1–3 and the shapes of textured surfaces4–7.

One issue that has engaged vision scientists interested in texture perception is whether texture processing 
primarily utilizes the information at texture edges or instead the regions between texture edges. Answering this 
question is complicated by virtue of the fact that there are different dimensions of texture variation (see above), 
different types of edge (smooth, sharp, cusp) and different types of task (detection, discrimination, effortless 
segmentation). Thus, what is edge-based and what is regions-based may depend on any one or other or more 
of the above factors.

A handful of studies have attempted to address this question directly by examining edge detection mecha-
nisms using first order (luminance, colour) or second order (orientation, contrast) modulated stimuli. Studies 
examining first-order edge detection mechanisms have focused on detection of noisy luminance edge stimuli8, 
step edges embedded in brown noise9 and luminance10 or chromatic11 blurred edges. Evidence from these studies 
indicate that detection is mediated by a diversity of filters with different receptive field shapes and sizes8. Other 
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studies have examined second-order boundary detection for textures defined by orientation12–15 or contrast16–18 
and which cannot be detected by mechanisms sensitive to first-order boundaries19,20.

In one such study, by Gurnsey and Laundry14, required observers to select an orientation-defined texture 
from one of four quadrants in a spatial four-alternative forced-choice task. They found that smoothing the border 
between the quadrants or introducing a gap between them had only a moderate effect on performance, conclud-
ing that while both edge- and region-based mechanisms are involved in texture discrimination the region-based 
mechanism is the more important. Wolfson and Landy15 later showed that two texture regions differing in mean 
element orientation were most easily discriminated when they abutted. However, when the textures differed in 
the standard deviation of the orientation distribution (termed here orientation-variance-modulated), perfor-
mance was similar for abutting and separated textures. Their study suggests that an important factor determining 
whether texture discrimination is edge- or region-based is the type of texture modulation.

Several texture perception studies have measured detection using textures periodically modulated along a 
particular dimension. In these studies, the texture detection task involves selecting the forced-choice interval 
containing the modulated as opposed to unmodulated texture. The dependent variable is invariably the amplitude 
of texture modulation required to reach threshold17,18,21–26. Of these studies the one by Kingdom and Keeble23 
addresses most closely the issue addressed here, in that it considered the relative detectability of abrupt versus 
smooth texture modulations. Using orientation-defined textures Kingdom and Keeble measured modulation 
amplitude thresholds for sinewave (SN), square-wave (SQ) and missing-fundamental (MF) wave patterns across 
a range of modulation spatial frequencies. The sinusoidal modulation exemplified smooth texture variations, the 
square-wave abrupt texture variations and the missing fundamental both abrupt and smooth texture variations. 
Kingdom and Keeble23 found a clear ordering of sensitivity SQ > SN > MF and showed that the detection of all 
three types of waveform could be modelled by a Fourier-energy-sensitive mechanism that resembled the opera-
tion of a single linear filter. Their study showed that what mattered was the overall texture energy in the stimulus, 
suggesting that detection was region based. Using contrast modulated stimuli, DiMattina and Baker16 measured 
modulation thresholds for both the detection and discrimination of boundary orientation and showed that 
participants use spatial information in different ways in the two tasks, making use of ‘region-based’ processing 
for detection and ‘edge-based’ processing for discrimination. The above-mentioned studies highlight the need 
for a comparison of different types of texture modulation, and different tasks.

In this communication, we have considered the task-dependency of various types of texture modulation, 
texture waveform types and modulation spatial frequency, for two tasks: detection and discrimination. The 
results have helped refine our understanding of the conditions favouring whether texture processing is edge- or 
region-based.

Methods
Participants
The three authors acted as participants, though one of them was naive as to the purpose of the experiments when 
tested. All had normal or corrected-to-normal visual acuity. Participants gave their written informed consent 
prior to taking part and were treated in accordance with the Declaration of Helsinki (2008, version 6). All research 
procedures were approved by the Research Institute of the McGill University Health Centre (RI-MUHC) Ethics 
Board and by the General University Ethics Panel (GUEP) at the University of Stirling.

Stimuli—generation and display
The stimuli were generated by a ViSaGe MKII video-graphics card (Cambridge Research Systems Ltd., UK) and 
presented on a gamma-corrected 20-in ViewSonic Professional Series PF817 cathode ray tube (CRT) monitor 
(ViewSonic, Brea, CA, USA) with spatial resolution of 1024 × 768 and refresh rate of 85 Hz. Monitor luminance 
was gamma-corrected after calibration with an Optical OP200E photometer. All stimuli were presented in the 
center of the monitor on a mid-grey background with mean luminance of 47.2 cd/m2. Viewing distance was 
100 cm. Stimuli were generated and data collected using psychophysics software written in C/C++ containing 
embedded ViSaGe routines.

Textures were 10 deg in diameter and consisted of 2500 quasi-randomly-positioned Gabor micropatterns 
according to five types of modulation: luminance modulation (LM), orientation modulation (OM), contrast 
modulation (CM), orientation variance modulation (OVM) and contrast variance modulation (CVM). Example 
textures are shown in Fig. 1. The Gabors were all odd-symmetric with a luminance spatial frequency of 6 cycles 
per degree (cpd), a bandwidth at half-height of 1.5 octaves and an envelope diameter of 5 standard deviations 
(SDs). Gabors were randomly positioned with the constraint that adjacent Gabors were a minimum of 1.7 SDs 
apart. Gabor orientations were selected from 1440 templates equally distributed across a 360 deg range, resulting 
in an orientation precision of 0.25 deg.

Similar to the study by Kingdom and Keble23 described earlier, each texture modulation type was defined by 
three types of waveform: sinewave (SN), square-wave (SQ) and cusp-wave (CS), as shown for the OM texture in 
Fig. 2a. The cusp waveform was constructed by removing an equal-amplitude sinewave from a square-wave. The 
CS stimulus is similar in profile to the well-known missing-fundamental (MF) waveform23, formed by subtract-
ing from a square wave its fundamental harmonic component which is 4/π or 1.273 time the amplitude of the 
square-wave itself. The reason we chose a CS rather than MF waveform is that the removal of an equal-amplitude 
SN from a SQ to make a CS allows for a more direct comparison of the amplitude thresholds for the three types of 
waveform. However, this is not an important constraint since the model described below transforms the stimulus 
amplitudes in whatever form to best fit the data. As the figure shows, the SN textures have only smooth varia-
tions, the SQ texture sharp variations with uniform regions in between and the CS waveform sharp variations 
and non-uniform regions in between. We used four modulation spatial frequencies: 0.1, 0.2, 0.4 and 0.8 cpd, 
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corresponding to 1, 2, 4 and 8 cycles-per-image (cpi) (see Fig. 2b). Thus, given five types of texture modulation, 
three modulation waveforms and four spatial frequencies there were a total of 60 conditions for each task.

The LM textures were constructed by combining two components: a Gabor texture and a LM grating. The two 
components were presented on separate pages of video memory that alternated at 120 Hz. The Gabor contrasts 
on one video page were sinusoidally modulated with an amplitude of 0.333 and mean of 0.666 resulting in a 
peak-to-trough contrast ratio of 3 and an amplitude/mean texture contrast of 0.5. The LM grating displayed on 
the other video page had a Michelson contrast of 0.5, resulting in a peak-to-trough luminance ratio of 3. These 
two components were combined spatially in-phase to simulate the shading of a uniform-in-contrast texture27. 
Due to the alternation of the two video pages all contrasts reaching the eye were halved.

In the OM textures Gabor contrast was 0.333 with orientations modulated around a mean of 90 deg (horizon-
tal). The CM textures were constructed from Gabors whose contrasts were modulated around a mean of 0.333. 
The OVM textures were modulated in orientation variance around a mean orientation of 90 deg, and the CVM 
textures were modulated in contrast variance around a mean contrast of 0.333.

Procedure—detection versus discrimination
For each type of texture, a two-interval forced-choice (2IFC) design was employed to measure modulation ampli-
tude thresholds for both detection and discrimination. All participants performed both texture tasks (Fig. 3).

In the detection task, the test stimulus was a modulated texture whose texture bar orientations were randomly 
selected from two values: ± 5 deg for OM and LM, ± 8 deg for CM and ± 10 deg for OVM and CVM. These values 
were the same as those selected for the discrimination task, as described below, but were different for the different 
texture types in order to roughly equate performance across texture type in the discrimination task, as determined 
by pilot studies. Modulation phase was randomized on each trial. The test stimulus was randomly presented in 
one of the two intervals with the other interval containing a zero-amplitude stimulus (Fig. 3a). Each stimulus 
was presented for 500 ms separated by an inter-stimulus interval (ISI) of 500 ms. All stimuli were presented in a 
raised cosine envelope with an exposure duration of 500 ms to minimize the presence of sharp temporal lumi-
nance transients. The task for the participant was to indicate by a key press which of the two intervals contained 

Figure 1.   Example textures consisting of quasi-randomly positioned Gabor micropatterns arranged to produce 
five types of modulation: luminance modulation (LM), orientation modulation (OM), contrast modulation 
(CM), orientation variance modulation (OVM) and contrast variance modulation (CVM). All modulations in 
the figure are square wave.
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the modulation. Following each response there was an inter-trial-interval of 500 ms prior to the next stimulus 
presentation, enabling participant control over stimulus timing.

For each condition, we varied the amplitude of the modulation using a three-up, one-down staircase proce-
dure with multiplicative step changes. The initial test amplitude was set to a random value within a small range 
above threshold. For the first five trials of each staircase the step size was 1.6 and thereafter 1.3. The staircase 
converged on the 79% correct threshold level and was terminated after 10 reversals. The geometric mean stimulus 
value of the last 8 reversals was used as the threshold. Each participant collected between 3 and 6 thresholds for 
each condition (i.e. combination of type of modulation, waveform and modulation frequency). The means and 
standard errors of these thresholds were then calculated, and these are the thresholds and error bars shown in 
all graphs.

In the discrimination task, the two intervals contained texture bars with left- or-right-oblique orientations 
that were the same as the orientation pairs used in the detection task. Participants were required to indicate 
the interval containing the left-oblique orientation (Fig. 3b). Otherwise, the protocol was the same as for the 
detection task.

Results
Experimental data
OM and OVM textures
Figure 4 shows amplitude thresholds obtained with orientation modulated (a) and orientation-variance modu-
lated (b) textures as a function of the spatial frequency of the modulation waveform for the sinewave (blue), 
square-wave (red) and cusp-wave (green) modulations for both detection (left) and discrimination (right) tasks.

For the detection task, the OM and OVM texture (left panels in Fig. 3a,b) results indicate lowest thresholds for 
the square-wave (SQ), followed by sinewave (SN) and cusp-wave (CS), thus following the ordering SQ < SN < CS. 
A similar pattern was also obtained for the OVM discrimination task, with OVM thresholds being of comparable 
magnitude in both tasks. This SQ < SN < CS result would be expected if all the texture energy available was used 
for detection, therefore suggesting that the OM detection and OVM detection and discrimination tasks involved 
region-based mechanisms. For both OM and OVM textures and both tasks, the CS thresholds increased with 

Figure 2.   Example orientation-modulated textures. (a) Three types of modulation waveform: sinewave (Sine), 
square-wave (Square) and cusp-wave (Cusp), all at 2 cycles-per-image (cpi) or 0.2 cycles-per-deg (cpd), and (b) 
with different modulation waveform frequencies: 1, 4 and 8 cpi, corresponding to 0.1, 0.4 and 0.8 cpd.
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the spatial frequency of modulation, while SQ and SN thresholds were comparable, showing only a modest 
increase, if any.

However, for the discrimination task with the OM texture, at least at low texture spatial frequencies, threshold 
amplitudes obtained with SQ and CS modulations were comparable and lower than the threshold amplitudes 
obtained with SN modulation (i.e., they followed the order SQ ≤ CS < SN). This suggests that texture edges were 
the more salient features. Thus, at low spatial frequencies of modulation, the discrimination task employed 
edge-based mechanism. At medium and high spatial frequencies of texture modulation, the two tasks produced 
comparable pattern of results for OM textures, although with slightly higher thresholds for discrimination.

LM textures
Figure 5 shows amplitude thresholds obtained with luminance modulated textures as a function of the spatial 
frequency of the modulation waveform for the sinewave (blue), square-wave (red) and cusp-wave (green) modu-
lations for both detection (left) and discrimination (right) tasks.

The LM texture results are similar with the OM textures (Fig. 4a). Specifically, the LM detection results follow 
the ordering SQ < SN < CS suggesting that LM detection task was region-based. For the LM discrimination task, 
at low texture spatial frequencies, the rule of SQ ≤ CS < SN threshold amplitudes was found, suggesting that the 
texture edges were more salient features and thus, the discrimination task was edge-based. As with OM tex-
ture, the CS thresholds obtained with LM textures increased with the spatial frequency of modulation, while at 
medium and high spatial frequencies of texture modulation, both tasks produced comparable results, although 
with slightly higher thresholds for discrimination.

Figure 3.   Two-interval forced-choice design for (a) detection and (b) discrimination. In the detection task 
participants selected the interval containing the modulation. In the discrimination task participants selected the 
interval with the leftward-oriented bars.
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CM and CVM textures
Amplitude thresholds obtained with contrast modulated (a) and contrast-variance modulated (b) textures are 
shown in Fig. 6 as a function of the spatial frequency of the modulation waveform for sinewave (blue), square-
wave (red) and cusp-wave (green) modulations, for both detection (left) and discrimination (right) tasks. Figure 6 
indicate a different pattern of results for CM and CVM textures (compare Fig. 6a,b). For the CM textures (Fig. 6a), 
amplitude detection and discrimination results show a similar trend to those obtained with OM and LM textures 
(i.e., at low spatial frequencies, detection thresholds are consistent with the ordering SQ < SN < CS suggesting that 
the task was region-based, while discrimination thresholds follow the order SQ ≤ CS < SN indicating that the 
task was edge-based. As before, the CS thresholds increased with the spatial frequency of modulation, while at 
medium and high spatial frequencies of texture modulation, the two tasks produced comparable results for CM.

For the CVM textures, thresholds were lowest for the cusp-wave, followed by square-wave and sinewave 
modulation, thus following a hierarchy of performance CS < SQ < SN, which suggests that the task was edge-
based. Thresholds were also comparable across different spatial frequencies of modulation, although there was 
a modest improvement at intermediate spatial frequencies which was mainly present in the discrimination task 
(see u-shaped curves in Fig. 9b right panel). Overall, the trend in the data pattern for SN and SQ was similar to 
CS but shifted towards higher amplitude threshold values.

Single filter/channel peak amplitude model
To understand the degree to which potential edge- versus region-based mechanisms mediate the variations in 
thresholds across conditions, we fitted a one-dimensional (1D) Difference of Gaussian (DoG) filter simultane-
ously to all three types of waveform across spatial frequency, for each type of texture, task and participant. It is 
important to note from the outset that the filter model is not meant to represent physiological reality. Rather it 
should be considered to be the computational equivalent of an array of filters selective for texture type and spatial 
frequency (e.g. see Kingdom and Keeble23), and a convenient method for reducing the data to a single parameter 
(see below) that captures the relative scale dependency of the detection and discrimination tasks.
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Figure 4.   Amplitude modulation thresholds and standard errors obtained with (a) orientation modulated 
(OM) and (b) orientation-variance modulated (OVM) textures are shown as a function of modulation spatial 
frequency for sinewave (blue), square-wave (red) and cusp-wave (green) modulations, for both detection (left 
panels) and discrimination (right panels) tasks and for three participants S1–S3.
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The objective of the model is to find a DoG filter shape that best fits the measured sensitivities to one dimen-
sional versions of the triplet of waveforms (SN, SQ, CS) for each type of texture, task and participant. The model 
predictions were obtained by convolving the filter with the triplet of waveforms across modulation spatial fre-
quency and adjusting the filter parameters to minimize the difference between the convolution outputs and the 
measured sensitivities to the triplets, which were calculated as 1/threshold amplitude. Once the filter was fitted, 
we calculated the spatial frequency (SF) that produced the maximum amplitude response of the filter. We suggest 
that this parameter best captures the relative degree to which the task is edge- or region-based, with a relatively 
low peak-amplitude SF indicating that the task is more region-based and relatively high peak-amplitude SF 
indicating that the task is more edge-based.

The DoG filter is given by:

(1)DoG =
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where the free parameters are: α the centre gain, β the ratio of gains of surround to centre, γ the centre standard 
deviation (SD) and δ the ratio of surround to centre SDs. For each set of fitted parameters [α β γ δ] we determined 
the filter spatial frequency that gives the peak amplitude response, as given by:

where w is the width of the filter that enables SF at peak amplitude to be given in cycles per image and was set to 
256. As a check we also determined the value of SF at peak amplitude after subjecting the filter to a discreet Fou-
rier transform (DFT). We refer to the equation model as the ‘analytical’ model and the DFT model by its name.

The initial filter guess parameters [α, β, γ, δ] was set to [100, 1, 4, 6] were set for all participants, types of 
texture and task. Note that the surround to center gain ration (β) parameter when fitted will tend to be close to 
1 to make the filter more-or-less d.c.-balanced, that is to have the gains of center and surround similar in order 
to avoid signal bias/ error. Given five modulation types, three participants and two tasks there were 30 estimates 
of SF at peak amplitude. The best fits to each triplet of data was achieved by minimizing the sum of squared dif-
ferences between model and data using the PAL-minimise function in the Palamedes toolbox28, which is similar 
to Matlab’s fminsearch function but in our experience less prone to instability.

The model fits are shown in Fig. 7 for OM and OVM textures, Fig. 8 for LM texture and Fig. 9 for CM and 
CVM texture, respectively. Overall, the model predicts reasonably well the ordering of sensitivities across spatial 
frequency and type of waveform. As a goodness of fit measure, we calculated the coefficient of determination R2 
between model and data and these values are shown on the graphs. There is generally good agreement between 
model and data but inevitably the R2 values are lower when the data is mostly flat across SF, as for example in S1 
and S2’s OM discrimination data, due to R being a measure of correlation, which is zero for flat data. The model 
fit for one condition, CVM, resulted in the lowest value of R2 ~ 0.4 and is not shown in Fig. 9b (see discussion 
below). From the CVM sensitivity data in Fig. 9b, one can see that the pattern of sensitivities for all three wave-
forms is very similar, varying only by a scaling factor.
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For the CVM textures, data for the SN and SQ waveforms are similar in shape to the CS waveform but shifted 
towards lower sensitivity values, suggesting that data for all three types of waveform can be described by the 
same function subject to different scaling factors. Thus, for the CVM textures, we fitted the CS waveform with the 
DoG model and modelled the SQ and SN waveforms as 1/2 and 1/3 of the fitted DoG amplitude respectively. The 
resulting fits to CVM sensitivity data are shown in Fig. 9b. If energy depends on the intensity of the waveform, 
and intensity is proportional to the square of the amplitude, then the scaling factor for the SQ waveform suggests 
that if amplitude is reduced by half, then energy will be decrease fourfold.

The ‘perceptual’ receptive field profiles of the model filters are shown in Figs. 7, 8, 9 (lower panels) and the 
parameters of each are given in the Supplementary Information (see Table 1). As an indication of the size of 
the perceptual filter’s receptive field, the center and surround SDs are also given in degrees of visual angle (see 
Table 1 in the Supplementary Information), and were calculated as:
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where w, the width of stimulus is 10 deg and im, the image width used in Eq. 2 is 256. The receptive field of the 
‘perceptual filter was estimated as 5 × Surround SD. The resulting values indicate that on average, across different 
texture types, the size of the perceptual RFs for the detection task (~ 17.4 deg) was about 3 times larger than that 
of the discrimination task (6.34 deg) (see Table 2 in the Supplementary Information).
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Finally, the individual and average across-participant analytical SFs at peak filter amplitude are shown in 
Fig. 10 for both detection (magenta) and discrimination (green) tasks. These modelling results show that for all 
types of textures, the analytical SF at peak amplitude is lower for detection than discrimination and is compara-
ble across OM, LM, CM and OVM texture types, while for the CVM texture the SF at peak amplitude is higher.

Filter model output (Log SF at peak amplitude) differences were assessed with a two-way repeated-measures 
ANOVA with factors Task (detection vs. discrimination) and Texture type (OM, LM, CM, OVM, CVM). Green-
house–Geisser correction was used where applicable. The analysis revealed a significant effect of task (F(1, 
2) = 50.71, p = 0.019). The main effect of texture type (F(1.216, 2.432) = 5.899, p = 0.114) and the interaction 
effect between task and texture type (F(1.558, 3.116) = 0.945, p = 0.451) were not significant. Bonferroni-cor-
rected post-hoc comparisons (paired-samples t-tests) revealed that all pairwise comparisons were not significant 
(all p’s > 0.066) except between LM and CVM for discrimination task (t(2) = 18.85, p = 0.028, 95% CI [− 0.976 
− 0.141]).
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Discussion
We aimed to reveal whether the nature of the task determines whether region-based or edge-based mechanisms 
are involved in texture perception. Using five texture types (OM, OVM, LM, CM, CVM), three types of waveform 
(SN, SQ and CS) and four modulation spatial frequencies (0.1, 0.2, 0.4 and 0.8 cpd) our psychophysical data 
indicate that for the detection task, threshold amplitudes invariable followed the ordering SQ < SN < CS across 
all spatial frequencies. This ordering of thresholds follows that of the (inverse) of the relative root-mean-square 
(rms) energies of the waveforms with amplitudes of unity, which are respectively 1, 0.71 and 0.48, consistent 
with detection being mediated by a region-based mechanism that integrates texture energy across space. This 
finding is in keeping with previous OM texture studies reporting that the greater the mean orientation difference 
across the boundary the better the performance22,23,29. Psychophysical masking studies have suggested that the 
different types of texture modulation used in the present study are likely detected by different mechanisms18,30. 
Our finding that for each texture type, task and participant the same model successfully accounts for the results 
of all three varieties of waveform implies that these mechanisms are nevertheless agnostic to waveform type.

For the discrimination task at low texture spatial frequencies and with CVM textures at all spatial frequencies, 
the ordering of threshold amplitudes was CS ≤ SQ with both CS and SQ thresholds being smaller than SN. This 
suggests that the task employed a more edge-based mechanism. Our one-dimensional Difference of Gaussian 
(DoG) filter model fitted to the data showed that the SF of the filter at peak amplitude was lower for detection 
than discrimination across all texture types, with the exception of the CVM textures. Taken together with the 
psychophysical data, the model provides strong evidence that task requirements are important for whether edges 
or regions underpin texture processing.

Models of texture perception
It is widely believed that texture processing can be modelled as a filter-rectify-filter, or FRF cascade (see reviews 
by Landy & Graham19, Graham31, and Victor et al.32). In the FRF model, the texture’s micropatterns are first 
detected by luminance-contrast-sensitive, or ‘1st-order’ band-pass filters. Filter outputs are then subject to a 
nonlinearity such as rectification or squaring in order to make all excursions from the mean level positive. The 
outputs of this stage are then pooled into ‘2nd-order’ band-pass filters whose responses encode the envelope 
modulation of the texture3,29,33–39.

Evidence that the 2nd-order envelope-tuned channels in the FRF scheme exist at multiple spatial scales comes 
from psychophysical studies using oblique masking of spatial-frequency-modulated textures40, subthreshold 
summation of orientation-modulated textures24 and single-unit recordings in cat cortical area 18 using contrast-
modulated textures41,42. With this in mind, it is worth emphasizing that our single-DoG filter model, like that of 
the model described in Kingdom and Keeble23, should be considered as the computational equivalent of multiple 
spatial-frequency-tuned 2nd-order filters, analogous to the way that the luminance contrast sensitivity func-
tion represents the umbrella of sensitivities of multiple spatial-frequency-tuned luminance-contrast channels.

We find that with the same set of stimuli there is an apparent shift towards higher envelope spatial frequencies 
when the task changes from detection to discrimination. How might texture mechanisms be recruited for these 
different tasks? A similar set of stimuli was employed in both the detection and discrimination tasks, so this will 
likely lead to a similar outcome at the “bottom-up” task-independent stage One possibility therefore is that the 
task-dependent outcome is the result of a second stage of “top-down” processes that exploit prior knowledge of 
the processing requirements of each task and stimulus arrangement, with attention being directed to the relevant 
stimulus feature(s) (e.g., as has been argued for the perception of symmetry43 and motion44; for reviews see45,46). 
Specifically it has been suggested that the interaction between texture-sensitive mechanisms and the nature of 
the task reflects ‘biased-saliency’32 (see Fig. 2b in Victor et al.32). The idea here is that texture mechanisms are 
largely fixed, yet subject to the effects of prior knowledge that biases such properties as signal-to-noise ratios, 
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Figure 10.   Filter model output. Individual (dots) and average across-participants (bars) analytical Log SF at 
peak amplitude of the filter model for both detection (magenta) and discrimination (green) tasks.
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filter sizes and filter gains, resulting in changes to the output decision. Our model is in keeping with the idea that 
average filter size is the property that is adjusted depending on the task.

Data availability
All data are available online at: http://​hdl.​handle.​net/​11667/​231.
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