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Tropical forest canopies represent the biosphere’s most significant and concentrated atmospheric 190 
interface for carbon, water and energy1, 2. Yet, in most Earth Systems Models the diverse and 191 
heterogeneous tropical forest biome is represented as a largely uniform ecosystem with either 192 
singular or a small number of fixed canopy ecophysiological properties3. This situation arises in 193 
part out of a lack of understanding of how and why the functional properties of tropical forest 194 
canopies vary geographically4. Here, we combine field-collected data from more than 1800 195 
vegetation plots and tree traits and merge these with satellite remote sensing, terrain, climate and 196 
soil data to predict variation across 13 tree morphological, structural and chemical functional 197 
traits, using these to compute and map the functional diversity of tropical forests. This reveals 198 
that the tropical Americas, Africa and Asia tend to occupy different portions of the total 199 
functional trait space available across tropical forests. Tropical American forests are predicted 200 
to have 40% greater functional richness than tropical African and Asian forests. Meanwhile, 201 
African forests were the most functionally divergent, 32% and 7% higher than that of tropical 202 
American and Asian forests. An uncertainty analysis highlights priority regions for further data 203 
collection, which would refine and improve these maps. Our predictions represent a ground-204 
based and remotely enabled global analysis of how and why the functional traits of tropical forest 205 
canopies vary across space.   206 
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Main 207 

Tropical forests are the most biodiverse terrestrial ecosystems on Earth, accounting for most global 208 

diversity, including up to two-thirds of the ~73,000 tree species found on Earth 1. They are responsible 209 

for key ecological functions, such as carbon exchange, nutrient cycling, and the provision of water and 210 

energy 2, as well as contributing to over a billion people’s livelihoods around the world 5. Despite the 211 

key importance of canopy functional traits (morphological, physiological or phenological attributes that 212 

determine function) for forest response to environmental change, our knowledge of the distribution of 213 

functional traits and of functional diversity at large spatial scales is limited, and this knowledge gap is 214 

particularly acute for tropical forests 6-8. Although abiotic factors such as water availability, temperature 215 

and soil conditions are expected to drive variation in plant functional traits across spatial scales 9-11, we 216 

do not fully understand how these factors modulate canopy trait distributions and function 4. Most global 217 

vegetation modelling efforts represent tropical forests as functionally-uniform green slabs of canopy, 218 

incorporating little geographical variation in canopy functional properties 3. This is partially due to the 219 

lack of spatially distributed functional trait data from across these regions 12. In reality, the combination 220 

of climate, geology, evolutionary history and biogeography leads to complex but poorly understood 221 

trait variation 13. There is, therefore, a fundamental need to describe and map how plant functional traits 222 

vary across tropical forests, as this variation has direct implications for ecosystem functioning and 223 

resilience to environmental change 14-16.   224 

Prediction of plant trait distributions across large spatial extents has generally focused on a few 225 

traits for which more observational data may be available, such as leaf nitrogen, leaf phosphorus, and 226 

specific leaf area, and in fewer cases other leaf traits, such as leaf dry mass and leaf potassium 17-19. 227 

Some advances in mapping trait distributions have been made by integrating plant functional type 228 

information with statistical modelling 17, 19 and more recently satellite remote sensing 4, 8. However, 229 

most recent predictive models still makes use of predefined plant functional types to estimate the 230 

distribution of single plant trait values, and still use coarse resolution satellite data (e.g. MODIS at 500 231 

m) to map coarse indicators of community level trait values, often with few ground observations 232 

available for tropical forests. This suggests the need to generate tools and methods that facilitate the 233 

tracking of functional traits across large spatial extents with both high spatial and temporal resolution. 234 

Moreover, there is a need to develop methods to compare predictions of plant functional trait values 235 

created by different approaches 20. While plant trait databases 21, 22 may help to model the distribution 236 

of functional traits as a function of biotic and abiotic conditions, we are far from having a full 237 

representation of the trait values for most tree species across the tropics or even for single regions, such 238 

as Amazonia with ca 15,000 tree species 23. Understanding functional trait variability across continents 239 

is crucial for predicting ecosystem responses to environmental changes, including climate change and 240 

land use alterations 9. Recent work from Diaz et al. 24 revealed substantial variation in functional traits 241 

across different ecosystems, both within and between plant communities. This variation highlights the 242 

relationship of plant traits strategies and different environmental conditions, allowing species to occupy 243 

distinct ecological niches. 244 

Tree traits across the tropics 245 

Here, we present the distribution of plant traits across the entirety of the planet's tropical forests by 246 

expanding on a new methodology 6 that uses an approach to predict functional traits using the European 247 

Space Agency’s Sentinel-2 satellite data. We used data for 13 tree functional traits (here onwards 248 

referred to as plant traits) spanning leaf morphological (leaf area, specific leaf area, thickness, fresh and 249 

dry mass, also including leaf water content) and chemical traits (mass-based calcium, carbon, 250 

magnesium, nitrogen, potassium and phosphorus concentrations), and also including predictions for 251 
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wood density 24, 25. These plant traits were gathered from across tropical forests from the Americas, 252 

Africa and Asia, here including northeast Australia in our broad definition of Asian tropical forests (Fig. 253 

1A). We focus on upper canopy leaf traits that are the primary interface for forest-atmosphere exchange, 254 

being part of important processes such as transpiration and photosynthesis 26 and which are directly 255 

detectable by spectral remote sensing. The plant traits are hence related to fundamental aspects of leaf 256 

morphology, chemistry and tree structure (Extended Data Table 1).   257 

Overall, we expect that acquisitive traits, which enhance the efficient capture and use of 258 

resources (e.g., high specific leaf area and leaf nutrient content), will be more prominent in locations 259 

with pronounced seasonal variation and nutrient-rich soils. In contrast, conservative traits (e.g., thicker, 260 

nutrient-poor leaves, high wood density) are likely to dominate in areas with less seasonal variability 261 

and poorer soils. In forests dominated by deciduous species, such as drier tropical forests, we expect 262 

species with acquisitive traits to become more prevalent, thereby making these traits more common in 263 

the ecosystem. African forests, which have experienced a long-term drying trend 27, generally exhibit 264 

lower species diversity 28 and distinct soil conditions 29 compared to American and Asian tropical 265 

forests. We expect these differences to result in a narrower distribution of plant trait values when 266 

compared to the wetter tropical forests of the Americas and Asia. Additionally, Asian tropical forests 267 

contain the widespread distribution of the Dipterocarpaceae family 30, which we anticipate will largely 268 

define the particular set of dominant traits in those areas, such as those associated with large, tough 269 

leaves, which are characteristic of this tree family. 270 

Traits were collected from the Global Ecosystems Monitoring (GEM) network 31, 271 

ForestPlots.net 32, BIEN (bien.nceas.ucsb.edu), TRY (www.try-db.org) and Diaz et al. 33. We 272 

incorporated vegetation census data from the GEM and Monitoreo Nacional Forestal (MONAFOR) 273 

networks and contributing networks to ForestPlots.net, with geo-located tree individuals from 1814 274 

permanent vegetation plots (Fig. 1A), spanning a wide set of environmental conditions across tropical 275 

forests (Fig. 1B) and covering a total of 799.5 ha (Extended Data Table 2). We used the plant traits and 276 

vegetation censuses to create pixel-level (from the Sentinel-2 satellites) community weighted mean 277 

(CWM) trait values using the method from Aguirre-Gutierrez et al. 6. The total number of CWM pixels 278 

used in our analysis were 79,955, which were distributed across 18 countries in the four tropical 279 

continents (Extended Data Table 2). Our vegetation plots are more abundant in the tropical forests of 280 

the Americas and it could be thought they mostly represent the environmental conditions in this region 281 

than in Africa and Asia. Our principal component analysis (Fig. 1B and 1C) shows that although our 282 

sampling sites do not cover all environmental space available across the tropics, especially those 283 

climates that are less common in the tropics (dark purple zone in Fig. 1B and 1C), we fundamentally 284 

cover the most prominent environmental conditions found across tropical forests.  285 

For each pixel for which we calculated trait CWM, we also extracted surface reflectance data 286 

from the Sentinel-2 satellite bands covering the years 2019 to 2022. Based on these spectral bands we 287 

also generated the Modified Chlorophyll Absorption Reflectance Index (MCARI), Modified Soil 288 

Adjusted Vegetation Index 2 (MSAVI2) and Normalised Difference Red Edge Index (NDRE). Using 289 

the grey level co-occurrence matrix for these indices we calculated their Entropy and Correlation as 290 

canopy texture variables. We extracted soil texture and chemistry (clay %, sand %, pH, cation exchange 291 

capacity) across the sampling plots from the SoilGrids.org and joined these with terrain (slope) and 292 

climate (Maximum Climatic Water Deficit (MCWD) and maximum temperature (Tmax)) from the 293 

TerraClimate dataset 34. We used the above-mentioned covariates in Random Forest models that have 294 

produced accurate plant trait mapping results 4, 6 to predict CWM plant functional traits at a pantropical 295 

scale. Our analysis hence provides insights into the variation in plant trait composition across climatic 296 
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and soil gradients across tropical forests. We tested for the prediction accuracy and uncertainty in trait 297 

predictions while accounting for potential spatial autocorrelation using a plot level spatial block leave-298 

one-out cross-validation 35 (Supplementary Table 1). We present the spatial predictions from the 299 

statistical models described above for canopy level morphological traits, wood density (Fig. 2; 300 

Supplementary Figures 1 to 7) and chemistry (Fig. 3; Supplementary Figures 8 to 13). Using our 13 301 

plant trait model predictions (maps) we tested fundamental knowledge gaps on the functional 302 

composition across tropical American, African and Asian forests.  303 

 304 
Models for leaf chemistry and wood density displayed higher accuracy (mean R² = 0.66 and 305 

0.48, respectively) than those for leaf morphology traits (mean R² = 0.25; Supplementary Table 1). 306 

Among these, leaf nitrogen (mean R2 = 0.53/Root Mean Squared Error = 0.29), phosphorus (0.50/0.02) 307 

and calcium (0.64/0.22) concentrations had the highest prediction accuracy followed by leaf carbon 308 

(0.40/1.42) and potassium (0.46/0.17). Models for SLA (0.32/19.95), leaf dry (0.32/0.58) and fresh 309 

mass (0.31/2.24) demonstrated moderate accuracy scores. In contrast, leaf magnesium concentration 310 

(0.27/0.06), leaf area (0.22/66.15), leaf water content (0.18/3.92), and leaf thickness 0.17/ 0.79) had 311 

lower accuracy. As expected, lower explanatory values were found when testing the models with the 312 

plots from Africa or Asia separately as less data were available (Supplementary Table 1). The individual 313 

surface reflectance of the Sentinel-2 bands, the derived vegetation indices and the climate/terrain 314 

variables obtained on average the highest importance scores across traits, with texture and soil metrics 315 

obtaining on average lower importance values (Extended Data Fig. 1). We report variable importance 316 

scores per variable and plant trait in Supplementary Figures 1F to 13F.  317 

We make available our trait mapped predictions across the tropics as an online resource where 318 

more detail can be obtained across the tropical region 319 

(https://pantropicalanalysis.users.earthengine.app/view/pantropical-traits-aguirre-gutierrez-2025). 320 

Using the modelled trait maps (Fig. 2A; Fig. 3A; Supplementary Figures 1 to 13) we compared the 321 

community weighted mean trait values among continents which provided insights into the variations in 322 

plant traits across continents (Supplementary Table 2; Fig. 2B and Fig. 3B; Supplementary Figures 1 to 323 

13). Following our predictions, for most traits, Asian forests show some of the highest average canopy-324 

level trait values, specifically average leaf area (119.3 cm2), leaf calcium (0.88 %), potassium (0.79 %), 325 

magnesium (0.28 %) concentrations, leaf water content (54.8 %), leaf fresh (3.9 g) and dry mass (1.06 326 

g), which is supported by local plot level data 6. However, similar values were found for leaf phosphorus 327 

for Asia and Africa (0.11 %) and slightly lower for the Americas (0.10 %), and also for leaf carbon (~47 328 

%) and leaf nitrogen concentrations (~2.15 %). African forests are predicted to have on average the 329 

smallest leaves (average of 100 cm2), highest leaf thickness (0.85 mm) and specific leaf area (133.9 330 

cm2 g−1). Wood density is predicted to be, on average, higher in tropical American and African forests 331 

(~0.60 g cm3) as also suggested by Sullivan et al. 36. These results emphasise Asia's unique trait spectra 332 

and how the African flora is adapted to a wide range of current and past environmental conditions 37. 333 

Traits in wet and dry tropical forests 334 

A changing climate impacts the distribution and persistence of forests across the tropics. Notably, there 335 

is an ongoing debate on the capacity of wet and dry tropical forests to adapt or shift their functional 336 

composition given global environmental change 38. Recent studies have shown that drier tropical forests 337 

could be responding faster to a changing climate by shifting their trait composition 39 but also that such 338 

drier tropical forests may be becoming more functionally homogeneous, which may negatively affect 339 

their capacity to respond to further environmental change 37. Hence, understanding the distribution of 340 

key tree functional traits across tropical forests is key to understanding their potential response to 341 

environmental changes including climate. 342 

https://pantropicalanalysis.users.earthengine.app/view/pantropical-traits-aguirre-gutierrez-2025
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We determined the extent of tropical broadleaf wet and dry forests using the RESOLVE 343 

Ecoregions dataset 40. Based on this division, wet forests, on average, displayed higher leaf area and 344 

leaf carbon concentration in comparison to dry forests (Supplementary Figure 1C; Supplementary Table 345 

3). In contrast, dry forests, which are characterised by the presence of stronger and longer dry seasons, 346 

exhibited higher average values for leaf chemistry traits such as leaf magnesium, nitrogen, calcium, 347 

potassium, phosphorus, and also for specific leaf area (Supplementary Figures 1D to 13D; 348 

Supplementary Table 3). These distinct strategies possibly ensure optimal nutrient utilisation for 349 

drought avoidance based on the leaf economics spectrum of ‘low’ leaf construction costs for fast energy 350 

gains amid challenging environmental conditions 41. Remarkably, both wet and dry tropical forests 351 

converge in certain traits, with comparable mean levels of leaf thickness, dry and fresh mass, leaf water 352 

content, and wood density underscoring their shared strategies. However, these similar average trait 353 

values could also be due to the fact that both strategies, i.e. drought avoidance and drought tolerance, 354 

can be present across both wet and dry forests, potentially ensuring resilience across tropical forest 355 

types 42. These findings from our comprehensive trait predictions provide crucial insights into the 356 

intricate linkages between environmental factors and plant traits across continents, contributing to our 357 

understanding of ecological diversity and adaptation strategies in diverse tropical forest ecosystems. 358 

Our findings shed light on the diverse plant trait patterns observed across continents, enhancing our 359 

understanding of global ecological variations 24. 360 

Areas across the wet tropics, which are highly species diverse, tended to have slightly more 361 

uncertain predictions (i.e., higher standard error, SE) for most traits than drier tropical forests 362 

(Supplementary Figures 1 to 13 middle panel). Our results for leaf morphology and tree structural traits 363 

such as fresh mass and wood density showed higher uncertainty in predictions (SE = 0.4-1.6 g and 0.02-364 

0.05 g cm3 respectively) across wetter locations such as central Amazonia, central Africa and Borneo. 365 

However, for most other morphological and leaf nutrients traits, their prediction uncertainty was low in 366 

the majority of the tropics (Supplementary Figures 1 to 13 middle panel). Overall, the uncertainty in 367 

the predictions of some traits may result from searching for simple relationships between individual 368 

traits and the environment while tree individuals represent a combination of traits and trait values that 369 

may be interpreted as functional strategies or syndromes. It is the syndrome rather than the individual 370 

trait that is selected for in nature. Our findings on the uncertainty of trait predictions give an insight into 371 

areas across the tropics that may benefit the most from more extensive field trait campaigns 372 

(Supplementary Figure 1 to 13 middle panel; Extended Data Fig. 2).  373 

Functional diversity of tropical forests 374 

The resilience of an ecosystem to environmental change can be partially assessed by the diversity of its 375 

functional trait values. According to the biodiversity–ecosystem functioning insurance hypothesis 43, 376 

ecosystems with greater taxonomic and functional diversity are less affected by changes in the 377 

environment. Recent studies support this, showing that tropical forests with higher functional diversity 378 

and high functional redundancy tend to be less adversely affected by extreme weather effects such as 379 

El Niño than less functionally diverse and redundant forests 44. Hence, functional diversity indicators 380 

such as functional richness and functional divergence can shed light on the capacity of ecosystems to 381 

respond to global environmental change. Therefore, determining the functional diversity of tropical 382 

forest ecosystems will enhance our understanding of their resilience and the possible impacts of 383 

environmental change on ecosystem functioning and its services to people.  384 

To generate a pantropical understanding of the functional diversity of tropical forests across the 385 

Americas, Africa and Asia, and how these three compare to each other, we first built a Principal 386 

Component Analysis (PCA) that offers insights into the distribution of ecological strategies or 387 

syndromes of plant communities 45 across tropical forests. This PCA was based on the pixel values from 388 
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the spatial predictions (maps) of canopy and wood density traits (Fig. 2. Fig. 3 and Supplementary 389 

Figures 1-13). The first two PCA axes (Fig. 4A and Fig. 4B), explain 43.9% (PC1) and 20.6% (PC2) of 390 

the pantropical trait variance respectively, and highlight key traits driving the functional space across 391 

tropical forests at a pantropical extent. In our analysis leaf nutrients such as Ca, N, P, K and Mg are the 392 

main traits loading PC1 (-0.39, -0.25, -0.39, -0.39 respectively; Supplementary Table 4), with carbon 393 

(0.35) and wood density (0.27) in opposite directions. PC2 is mainly loaded by leaf structural and 394 

morphological characteristics such as dry mass (0.52), fresh mass (0.43), area (0.47) and SLA (-0.32) 395 

(Fig. 4A and Fig. 4B).  396 

Following the PCA results, central-west Amazonia, central Africa, and to some extent some 397 

areas of SE Asia, show areas with trait syndromes related to higher wood density and leaf carbon (Fig. 398 

4C, PC1, top panel), but also higher leaf area and leaf fresh and dry mass (Fig. 4C, PC2, bottom panel). 399 

Wood density is closely related to plant mechanical and hydraulic properties and has been shown to 400 

have a negative relationship with mortality given increased physical strength and resistance to drought-401 

induced embolism 46. The highest leaf carbon concentration (C) values are predicted to be found in wet 402 

regions with relatively infertile soils in the Americas, Africa and Asia, such as northwest Amazonia, 403 

Central Africa and much of Borneo, and tend to decline towards drier tropical forests (Fig. 3A to panel; 404 

Supplementary Figure 8). An alternative strategy for dry forest tree species is deciduousness, which 405 

leads to low leaf carbon concentration because of lower investment in leaf defence and longevity. On 406 

dry forests with fertile soils, we expect deciduousness as a dominant strategy (thus low C), but on less 407 

fertile soils we would expect a transition to an evergreen strategy (higher C) to conserve resources. 408 

Higher leaf carbon, and generally also higher leaf fresh and dry mass, reflect an increased investment 409 

in leaf structural and physical defences 47, which favour longer leaf life span and thus higher investment 410 

in compounds like lignin, tannins and soluble phenolics that contain high carbon levels 48.  411 

Syndromes related to higher leaf nutrients (Fig. 4C top panel PC1) and higher specific leaf area 412 

(Fig. 4C middle panel PC2) are opposed to the patterns explained above, with higher leaf nutrients and 413 

intermediate specific leaf area values found across tropical dry forests and increasing leaf water content 414 

predicted across the Andes and high elevations of SE Asia (Fig. 4C bottom panel PC3). Leaf nutrients 415 

are generally lowest in wet central west Amazon, Central Africa and wet forests of insular SE Asia (Fig. 416 

3) and tends to increase across dry forests in south and south-eastern Brazil, West Africa, eastern 417 

Madagascar, most of the tropical forests in India and northern SE Asian (Fig. 3 and Fig. 4 PC3). This 418 

supports an important role for soil physical and chemical properties in shaping leaf phosphorus 419 

distributions (Fig. 3A bottom panel; Fig. 4A, and 4C; Supplementary Figure 13) 49.  We predict a 420 

consistently high leaf area across much of insular SE Asia (Fig. 4C). This is in agreement with previous 421 

plot level analyses 31 that found a larger leaf area for forests in Malaysian Borneo than in those from 422 

other tropical regions. Many of the wet Bornean Forest canopies are dominated by a single family 423 

(Dipterocarpaceae) 30 with a particular set of traits, such as large, tough leaves, and this biogeographical 424 

feature may explain some of the leaf morphological differences between Asian and other forests. In the 425 

tropical Americas, syndromes related to lower SLA values are found across the Andes, mountains of 426 

southern Brazil and also in the extremely wet and nutrient-poor areas of NW Amazonia such as across 427 

the sandy soils of upper Rio Negro. Lower SLA can be found across Central Africa and in Asia across 428 

the mountains of New Guinea (Fig. 4C bottom panel). Plants with lower SLA tend to have thicker 429 

leaves, which are more resistant to herbivory and decomposition and lower SLA values indicate a 430 

conservative strategy where resources are invested in long-lasting leaves but often with lower 431 

photosynthetic capacity 25.  432 
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Building upon our PCA analysis generated above, we calculated the trait functional diversity, 433 

here by means of their trait functional richness (FRich) and functional divergence (FDiv), across 434 

tropical forests (Fig. 4A) and calculated how these FRich and FDiv differ between the forests of tropical 435 

Americas, Africa and Asia (Fig. 4B). FRich represents the size of the functional trait space and FDiv 436 

indicates the distribution of CWM trait abundances within the functional trait space 45. The overall 437 

FRich across tropical forests is calculated to be 111.7 with a pantropical FDiv of 0.46 (Fig. 4A). The 438 

observed FRich values of 109.2 for the Americas, 66.5 for Africa, and 63.5 for Asia point to large 439 

differences in the diversity of functional trait values within these regions (Fig. 4B). The higher FRich 440 

of the Americas suggests these forests have a broader array of plant strategies and adaptations, 441 

potentially influenced by diverse environmental niches and historical factors 50 and congruent with the 442 

most taxonomically diverse tropical forests being in the tropical Americas 1, 23. In contrast, the lower 443 

FRich in Africa and Asia suggests that specific environmental filters or historical biogeographic 444 

constraints shape the functional traits of plant communities in these regions 51. The FDiv values ranged 445 

from 0.42 for the Americas to 0.61 for Africa, and 0.57 for Asia, revealing varying degrees of 446 

dissimilarity in functional trait space among tropical forests (Fig. 4B). Higher FDiv values imply greater 447 

divergence, suggesting stronger niche differentiation or competitive interactions. The comparatively 448 

lower FDiv in the Americas might imply a higher degree of functional redundancy across communities. 449 

Conversely, the higher FDiv in Africa and Asia suggests a more specialised resource utilisation pattern, 450 

potentially due to intense interspecific competition or specific ecological constraints in these regions. 451 

Regions with higher functional divergence might exhibit higher ecosystem stability due to niche 452 

complementarity, whereas regions with lower divergence may face challenges in adapting to changing 453 

environmental conditions. The observed patterns have implications for ecosystem functioning, 454 

biodiversity conservation, and ecosystem services provision.  455 

Understanding the tree trait composition and functional diversity across the tropics is of pivotal 456 

importance for global biodiversity and ecosystems modelling and conservation efforts 52. While 457 

dynamic global vegetation models (DGVM) and species distribution models (SDMs) help to assess 458 

impacts of a changing climate, DGVMs often rely on broad plant functional types and SDMs commonly 459 

overlook functional trait composition and diversity (but see 53). By incorporating trait-based 460 

mechanisms and functional trait diversity, models can better capture the variability in plant responses, 461 

potentially making more realistic predictions related to carbon cycling 54, vegetation distribution 55, and 462 

ecosystem composition and resilience 44. DGVMs and SDMs could include plant traits and plant 463 

functional diversity estimates to advance our understanding on ecosystem functioning and responses to 464 

global environmental change. 465 

Our capacity to use artificial intelligence to map plant functional traits by means of Deep Learning 466 

models applied to field trait 56 data or even photographs 57  is quickly developing. These models can 467 

process vast amounts of remote sensing data to identify and classify diverse biodiversity metrics 58, and 468 

particularly convolutional neural networks, have been integrated with spectral data to map plant traits 469 

using field data 59 and recently also citizen science approaches 60. There have been recent developments 470 

of new satellites with hyperspectral and high spatial resolution capabilities and on the availability of 471 

large amount of tree censuses and trait data across the tropics. This opens new venues for the coming 472 

years for testing the capabilities of large machine learning models, possibly involving deep learning, 473 

for using data across time and space from multiple sources. However, to obtain robust and reliable 474 

indicators of plant functional diversity and biodiversity levels across ecosystems AI models should 475 

complement and not replace traditional ecological methods - especially the direct field sampling and 476 

botanical identification of individual trees by experts. There is a need for tools that can generate 477 

predictions of biodiversity at high temporal resolution and our approach represents a way forward in 478 
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this direction. Going forward, there is the potential to track plant functional diversity across time, e.g. 479 

on a yearly basis, using satellite remote sensing data such as that from the Sentinel-2 satellites. Such an 480 

application would certainly require major efforts on field ecological data collection, availability of new 481 

satellite data, modelling algorithms, computing power and storage capabilities. All of this can be 482 

achieved by strong and fair collaborations between field researchers, universities and other public and 483 

private research organisation.  484 

Our study reveals and maps for the first time the geographical variation in the functional 485 

composition of the tropical moist and dry forests, where at least two thirds of Earth’s ∼73,000 tree 486 

species are found 1. Our trait predictions may indicate deep physiological constraints of adaptation to 487 

long-term climate and provide the basis for forecasting how shifting climates will impact tropical forest 488 

functional composition, and help develop a more mechanistic understanding and realistic predictive 489 

ecology across spatiotemporal scales. Built from unique, geolocated field records combined with an 490 

array of spectral, textural and environmental data, our maps represent data-informed spatial hypotheses 491 

that assist in identification of priority areas for further field data collection, especially across tropical 492 

forests in Africa and Asia where less data is available. The ultimate accuracy of the plant functional 493 

trait predictions depends on the sample coverage, the accuracy of the field measurements, and the 494 

quality of the pantropical covariates used to spatially extrapolate our models. Undoubtedly, predictions 495 

will improve as new environmental data sets become available and as vegetation census and trait data 496 

expand further over space and time. Nevertheless, these maps represent a major advance on previous 497 

site-based speculation on the geographical variation on the ecophysiology of the entire tropical forest 498 

biome, and thereby inform our understanding of tropical forests functioning in the context of the whole 499 

Earth system. 500 

 501 

 502 

Figure legends 503 

Figure 1. Study area showing the distribution of 1814 vegetation plots across the original biome 504 
space for tropical forests (grey background) in the Americas (659.6 ha), Africa (124.6 ha) and 505 
Asia (15.4 ha) (A). Principal component analysis (B) PC1 and PC2, (C) PC3, depicting the 506 
environmental space found across the tropics (yellow and green colours show higher map pixel counts 507 
representing area covered) based on mean maximum air temperature (Tmax), soil moisture (SM), solar 508 
radiation (SR), slope, maximum climatic water deficit (MCWD), soil cation exchange capacity (CEC), 509 
soil pH, sand and clay amount. The grey, violet and orange points show the location of the sampling 510 
plots in environmental space found across the tropics. PC1 accounts for 27% of explained variance, 511 
PC2 for 24% and PC3 for 14%, with all three accounting for 65% of total explained variance. PC1 is 512 
mainly loaded by water deficit index MCWD (-0.47), SR (0.50) and soil pH (0.59), PC2 by the soil 513 
sand (0.57), clay (-0.53) and CEC (-0.44), and PC3 by SM (-0.63) and Tmax (-0.49). Climate data were 514 
derived for each pixel from the TerraClimate project 34 and soil data from SoilGrids.org.  515 
 516 
Figure 2. Predicted distribution of a selection of community weighted mean morphological and 517 
structural plant traits (A) and boxplots (B) showing the CWM trait distribution values for 518 
tropical American (AM), African (AF) and Asian (AS) forests extracted from the spatial 519 
predictions. In (A), red to orange show areas with low to intermediate trait values, while light to dark 520 
blue depict areas with intermediate to high trait values. The remaining morphological traits and the 521 
spatial predictions of their uncertainty are shown in Supplementary Figures 1-7. In B) the horizontal 522 
black line depicts the median CWM trait value and vertical lines show the whiskers extending to the 523 
largest CWM trait value or not further than 1.5 times the interquartile range. For visualisation purposes, 524 
we excluded the extreme lowest and highest 1% of values in the maps in A) and outliers in B). AreaL: 525 
leaf area, SLA: specific leaf area, ThicknessL: leaf thickness and WD: wood density. For statistical 526 
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model results see Supplementary Table 1. For significance of differences between CWM trait mean 527 
values, obtained using a T-test with Bonferroni correction, see Supplementary Table 2. 528 
 529 
Figure 3. Predicted distribution of a selection of community weighted mean leaf nutrient plant 530 
traits (A) and boxplots (B) showing the CWM trait distribution values for tropical American 531 
(AM), African (AF) and Asian (AS) forests extracted from the spatial predictions. In (A), red to 532 
orange show areas with low to intermediate trait values while light to dark blue depict areas with 533 
intermediate to high trait values. The remaining chemistry traits and the spatial predictions of their 534 
uncertainty are shown in Supplementary Figures 8-13. In B) the horizontal black line depicts the median 535 
CWM trait value and vertical lines show the whiskers extending to the largest CWM trait value or not 536 
further than 1.5 times the interquartile range. For visualisation purposes, we excluded the extreme 537 
lowest and highest 1% of values in the maps in A) and outliers in B). CL: leaf carbon concentration, 538 
CaL: leaf calcium concentration, NL: leaf nitrogen concentration and PL: leaf phosphorus concentration. 539 
For statistical model results see Supplementary Table 1. For significance of differences between CWM 540 
trait mean values, obtained using a T-test with Bonferroni correction, see Supplementary Table 2. 541 
 542 

Figure 4. Functional trait space of plants across tropical forests in the Americas, Africa and Asia 543 
(including Australia), A) with principal component PC1 explaining 43.9% and PC2 20.6% of the 544 
variance in plant traits distributions. In (B) is the distribution of functional trait space for the tropical 545 
American (left), African (middle) and Asian (right; including Australia) forests separately. (C) Shows 546 
PC1 (top panel), PC2 (middle panel) and PC3 (bottom panel explaining 13% of the variance) from (A) 547 
predicted across tropical forests and depicts co-occurring trait syndromes or strategies with insets 548 
zooming in to show greater details of the predicted plant strategies. In (A) arrows indicate the 549 
contribution and direction of each trait for the PCA. (A) and (B) show the probabilistic density 550 
distribution defined by the two first principal components (PC1 and PC2)  space of the 13 plant 551 
functional traits used: Area: leaf area, C: leaf carbon concentration, Ca: leaf calcium concentration, K: 552 
leaf potassium concentration, Mg: leaf magnesium concentration, N: leaf nitrogen concentration, P: leaf 553 
phosphorus concentration, DM: leaf dry mass, FM: leaf fresh mass, SLA: specific leaf area, Thickness: 554 
leaf thickness, WC: leaf water content, WD: wood density (see Extended Data Table 1 for a description 555 
of the trait used). Within (A) and (B) the inner colour gradient represents the density of pixels in the PC 556 
trait space. Thick contour lines depict the 0.5 and 0.99 quantiles. The FRich shows the functional 557 
richness and the FDiv the functional divergence for the global trait space across continents (A) and for 558 
tropical American (B, left), African (B, middle) and Asian (B, right) forests. 559 

 560 

Methods 561 

Vegetation plots and plant traits 562 

We gathered vegetation census data from the GEM and Monitoreo Nacional Forestal (MONAFOR) 563 

networks and contributing networks to ForestPlots.net, being geo-located tree individuals from 1814 564 

demarcated and identified vegetation plots (Fig. 1A). The vegetation plots covered a wide set of the 565 

environmental conditions found across tropical forests (Fig. 1B) and spanned 799.5 ha (Extended Data 566 

Table 2). We aimed to match each individual tree to a trait value.  All plant functional traits used are 567 

part of the Global Ecosystems Monitoring network (GEM; gem.tropicalforests.ox.ac.uk) 31, the 568 

MONAFOR network, the ForestPlots (www.ForestPlots.net) 32, 61, 62, BIEN (bien.nceas.ucsb.edu), TRY 569 

(www.try-db.org)22 databases and from local collaborators and Diaz et al. 33, and were collected 570 

following a standardised methodology described in Both et al. 63, Martin et al. 64, Enquist et al. 65, 571 

Oliveras et al. 66 and Gvozdevaite et al. 67. For the GEM and ForestPlots.net provided traits, the tree 572 

species that contributed the most to plot basal area were sampled with 3–5 replicate individuals per 573 

species. Species representing 80% or more of the basal area were sampled for traits in low diversity 574 

sites and at least 70% in high diversity sites. For each selected tree a sun and a shade branch were 575 

http://www.forestplots.net/
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sampled, and in each branch 3–5 leaves were used for trait measurements. Leaf samples were analysed 576 

for chemistry (nitrogen: N, phosphorus: P, carbon: C, calcium: Ca, potassium: K and magnesium: Mg 577 

concentration) and morphological and structural traits (area: Area, specific leaf area: SLA, thickness: 578 

Thickness, fresh mass: FM and water content: WC) (see Extended Data Table 1 for units and 579 

definitions). If more than one value per trait per species was available, we used the trait mean at the 580 

species level for subsequent analysis. Our approach aimed to cover at least 70% of the canopy area of 581 

a pixel within a plot with trait data at species or genus level, often covering more than that (Extended 582 

Data Fig. 3). As when species-level trait data were unavailable we used the mean genus-level data, our 583 

analysis could be seen as more representative of the genus-level trait responses. When achieving at least 584 

70% coverage was not possible for a given trait in a given pixel, such pixel was left out of the analysis 585 

for the specific trait. All species names were standardised following the Taxonomic Name Resolution 586 

Service (TNRS; https://tnrs.biendata.org). 587 

Calculating community level trait values 588 

We used the pixel-level community weighted mean (CWM) trait method from Aguirre-Gutierrez et al. 589 
6 in our analysis, where they calculated the CWM of each trait for each 10 × 10 m pixel of the Sentinel-590 

2 imagery based on the canopy area occupied by the single tree crowns of each species encompassed in 591 

a given pixel. The total number of CWM pixels used in our analysis were 79,955, from 1814 unique 592 

permanent forest plots distributed across 18 countries in the four tropical continents (Extended Data 593 

Table 2). A full detailed description of the methods can be found in Aguirre-Gutierrez et al. 6 and we 594 

summarise it here. We calculated the CWM trait values for each 10 × 10 m Sentinel-2 pixel falling into 595 

a vegetation plot. We first geolocated the vegetation plot and the distribution of each individual tree in 596 

the plot. Some of the plots already had their tree crowns mapped. When this was not the case, we 597 

calculated the crown area based on regional allometric equations, from which we generated a crown 598 

polygon. Then for each pixel we calculated the trait CWM using the individual tree crown horizontal 599 

area as the weighting factor. We only used pixels that had at least a 70% basal area coverage with trait 600 

value in order to generate the trait CWM.  601 

 602 

Sentinel-2 spectral data 603 

The European Space Agency Sentinel-2 satellites (sentinel.esa.int/web/sentinel/missions/sentinel-2) 604 

have high multispectral (13 spectral channels covering the visible, near-infrared, and short-wave 605 

infrared), spatial (10 m for visible and near-infrared 835 nm, 20 m for other near-infrared and short-606 

wave infrared) and temporal coverage (revisit period of 5 days), in addition to open data availability. 607 

This high spatial, radiometric, and temporal resolution, provide the backbone to scale functional traits, 608 

such as leaf morphology, water content and covalent chemical bonds without the logistical and field 609 

constraints that are common across the tropics 6 and other regions 68. The Sentinel-2 Level-2A surface 610 

reflectance bands, vegetation indices and canopy texture metrics data extraction has been fully 611 

described in Aguirre-Gutierrez et al. 6 and here we give a summary of the main steps. We extracted 612 

Sentinel-2 Level-2A spectral data at the pixel level for each vegetation plot using the raw band values 613 

for bands B2 to B12, excluding bands B9 and B10 as those are used for cirrus, water vapour and cloud 614 

detection for the images and dates specified in Supplementary Table 5. Next, we calculated the 615 

vegetation indices Modified Chlorophyll Absorption Reflectance Index (MCARI), Modified Soil 616 

Adjusted Vegetation Index 2 (MSAVI2), and Normalised Difference Red Edge Index (NDRE).  617 

We also incorporated spatial information by using the spectral indices to derive neighbourhood 618 

canopy texture, entropy, and correlation with a 9 x 9 pixel grey level co-occurrence matrix (GLCM) 69. 619 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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The GLCM metrics are computed from a matrix that is spatially dependent. The co-occurrence matrix 620 

relies on the angular orientation and distance between adjacent pixels, illustrating the frequency of 621 

associations between a pixel and its neighbouring pixels. We applied a 9 × 9-pixel kernel window as 622 

this window size proved sufficient to capture ample canopy contrast information during the modelling 623 

stage without incurring substantial computation time.  624 

We generated spatially explicit predictions across tropical forests in Google Earth Engine 625 

(GEE) 70 using surface reflectance Sentinel-2 Level-2A images from June to March of 2019 to 2022 626 

because these months display the lowest cloud cover across most of our study areas. We applied the 627 

maskS2clouds and maskEdges to increase the quality of the imagery, especially to detect and mask 628 

clouds and cirrus. Based on the images selected we calculated a median spectral reflectance composite 629 

value per band and used it for generating the predictive maps. The reader can run the GEE code 630 

(Supplementary Table 5) to obtain the number and identity of the imagery used. 631 

Climate, topography and soil data 632 

We used the TerraClimate climate dataset 34 to extract climate data for the study area. These data have 633 

an original spatial resolution of ~4.6 km at the Equator and large temporal range (from 1951 to the 634 

present). In general, the TerraClimate builds upon the Climatic Research Unit climate data, CRU 55, 635 

downscales it and swaps the JRA55 reanalysis product 72 for CRU where there is insufficient station 636 

data to inform CRU. From the TerraClimate dataset we calculated the 30-year (encompassing 1988-637 

2017) mean annual maximum temperature (Tmax) and the maximum climatic water deficit (MCWD) for 638 

each vegetation plot. The MCWD is a metric for drought intensity and severity defined as the most 639 

negative value of the climatological water deficit (CWD) of a given year and we calculated it following 640 

Malhi et al. 73 but using the potential evapotranspiration instead of a fixed evapotranspiration value. We 641 

derived topography (slope) from the Shuttle Radar Topography Mission (SRTM) digital elevation 642 

model V3 product (SRTM Plus) provided by NASA JPL at an original spatial resolution of ~30 m at 643 

the equator 74. Soil characteristics such as texture and fertility also determine the distribution of plant 644 

species 47. Moreover, drier tropical forests tend to be distributed on more nutrient-rich soils than wetter 645 

forests 75, which therefore would also select for species adapted to such conditions.  Maps of soil data, 646 

i.e., percent sand and clay, pH and cation exchange capacity (CEC), were obtained from the SoilGrids 647 

project (https://soilgrids.org) 76 at a spatial resolution of 250 m pixel. All climate, topography and soil 648 

datasets were scaled to the Sentinel-2 pixel resolution to take advantage of its spectral reflectance pixel 649 

size. All spatial analyses were carried out in the GEE platform. 650 

Mapping plant traits 651 

We modelled each plant functional trait CWM as a function of the spectral, soil, topography and 652 

climatic variables using the Random Forests (RF) machine learning algorithm 77 in the R platform 78 653 

with the Ranger function in a High-Performance Computing system. RF stands out as a nonparametric 654 

algorithm known for its capabilities against overfitting and for its flexibility with respect to variations 655 

in the type and number of variable inputs. This robustness is attributed to the bagging process and the 656 

inclusion of random feature selection. Additionally, RF has been widely and successfully applied for 657 

modelling and predicting ecological and remote sensing data, both within individual ecosystems and 658 

across diverse environments 6, 68, 79, 80, 81. In order to parametrise the Random Forest models we 659 

conducted a comprehensive series of model optimization and regularisation techniques to mitigate 660 

overfitting 6. We determined the number of trees through a cross-validation analysis, exploring a range 661 

between 500 and 1500 trees. Similarly, we varied the number of variables randomly sampled as 662 

https://soilgrids.org/
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candidates at each split (mtry) within the range of 1 to 10. The final model incorporated the combination 663 

of parameters that yielded the lowest Root Mean Square Error (RMSE). We then obtained a map by 664 

applying the fitted model to make predictions for the full tropics where tropical wet and tropical dry 665 

broadleaf forests are located (as the data used for model fitting belong to these forest types). We 666 

determined the extent of the tropical broadleaf wet and dry forest using the RESOLVE Ecoregions 667 

dataset 40 (https://ecoregions.appspot.com/) and the tropical countries boundaries dataset (for the GEE 668 

app) 82. We further used the Land-use Cover map from the European Space Agency 83  to delimit the 669 

areas classified as forest and the Hansen et al. 84 30 m forest cover product to further delimit the 670 

predictions to areas with a threshold value of a minimum of 25% forest cover in a given pixel. Hence, 671 

even though an area may be included in the trait maps, it does not mean it is entirely forested. The 672 

accuracy of the predictions was quantified by the explained variance using the R2. Variable importance 673 

was calculated as the decrease in node impurities, from splitting on the focus variable, derived from the 674 

Out of Bag (OOB) error. We scaled the variable importance values per covariate to a 0–1 scale for 675 

comparison purposes. The GEE code used to carry out the spatial analyses described above is shown in 676 

Supplementary Table 5. 677 

In order to assess the uncertainty in model predictions in a spatially explicit manner we used 678 

spatial leave-one-out cross-validation 35 for the full dataset. When predicting the Random Forest 679 

models, we also obtained their standard error (SE) using the infinitesimal jackknife approach as a 680 

measure of prediction uncertainty. From these SE mapped predictions, we also calculated a final map 681 

of new field sampling needs by standardising each trait SE mapped prediction from 0 to 1 and obtaining 682 

an average value of the sum of those standardised SE maps. From this final field sampling needs map, 683 

we calculated the areas belonging to the lowest, middle and highest 33 percentiles and classified these 684 

as ‘Low’, ‘Intermediate’ and ‘High’ respectively. This final map could aid in generating field sampling 685 

priorities for the traits used in this study.  686 

We tested for differences in the among continent mean community weighted mean trait values 687 

using T-test analysis with Bonferroni correction for significance values. As we are working with the 688 

pixel predictions per continent we have several millions of pixel-level estimates, which makes it 689 

possible to obtain significant P-values (P<0.05) just because of the high number of pixels involved. 690 

Therefore, we carried out the T-test for the full dataset (comparing continents) and also by first 691 

randomly sampling 10% and 1% of the data per continent for the comparisons as to obtain an indication 692 

of the possible effect of sample size on the among continents comparison results. 693 

Functional Richness and Divergence 694 

We calculated the functional richness (FRich) and divergence (FDiv) found at pantropical extent and 695 

also for the tropical Americas, Africa and Asia. To this end we took the mapped CWM trait predictions 696 

and carried out a principal component analysis with them and calculated Trait Probability Functions 697 

(TPD) as described in Carmona et al.45, 85. Using the mapped predictions, and not only the pixels used 698 

to build the trait CWM, allowed us to avoid having a larger representation of the tropical forests in the 699 

Americas in comparison to those found in Africa and Asia. To carry out the principal component 700 

analysis we used the ‘Princomp’ function in R with the data from the mapped predictions of the thirteen 701 

traits. We then used the ‘Funspace’ R function to create the TPDs, with which we would obtain the 702 

functional trait space available at a pantropical extent. We also calculated the TDPs for each continent 703 

based on the pantropical TDP so these could be compared between each other 45, 85. Based on these we 704 

then calculate the functional richness and functional divergence metrics at a pantropical extent and also 705 
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for each continent. In our analysis we represent the global TPD (100%) and also highlight the contours 706 

containing 50% and 99% of the total probability.  707 

 708 
 709 
Extended data figures and tables 710 
Extended Data Fig. 1 The importance of spectral, vegetation indices, canopy texture parameters, 711 
climate, terrain and soil conditions for model prediction of each plant trait.  AreaL: leaf area, CL: leaf 712 
carbon concentration, CaL: leaf calcium concentration, DML: leaf dry mass, FML: leaf fresh mass, KL: 713 
leaf potassium concentration, MgL: leaf magnesium concentration, NL: leaf nitrogen concentration, PL: 714 
leaf phosphorus concentration, SLA: specific leaf area, ThicknessL: leaf thickness, WCL: leaf water 715 
content, WD: wood density (see Extended Data Table 1 for a description of the trait used).  The 716 
importance of each variable for each trait can be seen in Supplementary Figures 1 to 13. The importance 717 
values were obtained from the RandomForest models. 718 

Extended Data Fig. 2 Predicted distribution of field sampling needs. The map shows the locations 719 
where higher standard error of predictions of community weighted mean trait values are found with 720 
orange showing high, yellow showing intermediate and green showing low sampling needs. The map 721 
was obtained by standardising each community weighted mean standard error (SE) mapped prediction 722 
from 0 to 1 and obtaining an average value of the sum of those standardised SE maps. From this final 723 
field sampling needs map, we calculated the areas belonging to the lowest, middle and highest 33 724 
percentiles and classified these as ‘Low’, ‘Intermediate’ and ‘High’ respectively. This final map could 725 
aid in generating field sampling priorities for the traits used in this study. 726 
 727 
Extended Data Fig. 3 Percent area covered by traits at the pixel level. Pixels had a minimum of 70% 728 
of the trees basal area covered with trait data in order to enter the analysis. As shown, in several cases 729 
we reached higher than 70% basal area coverage at the pixel level. AreaL: leaf area, CL: leaf carbon 730 
concentration, CaL: leaf calcium concentration, DML: leaf dry mass, FML: leaf fresh mass, KL: leaf 731 
potassium concentration, MgL: leaf magnesium concentration, NL: leaf nitrogen concentration, PL: leaf 732 
phosphorus concentration, SLA: specific leaf area, ThicknessL: leaf thickness, WCL: leaf water content, 733 
WD: wood density. 734 
 735 
Extended Data Table 1 Plant functional traits modelled and predicted across the tropics. 736 
 737 
Extended Data Table 2 Description of the vegetation plots used across the tropical forests and their 738 
abiotic characteristics. N: number of vegetation plots, N Pixels: number of Sentinel-2 satellite pixels 739 
used, Area (ha): planimetric pixel area used, MCWD: mean maximum climatic water deficit. Tmax: 740 
average maximum temperature, Slope: average terrain slope. The average and coefficient of variation 741 
(CV as a percentage) are given for each climatic variable and were calculated using a climatology of 742 
the last 30 years (1988 and 2017). The climate data was extracted from the TerraClimate dataset 743 
(www.nature.com/articles/sdata2017191) and the slope was derived from the Shuttle Radar 744 
Topography Mission (SRTM; www.earthdata.nasa.gov/sensors/srtm). 745 
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