
Special Issue Article

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–22

� The Author(s) 2024

DOI: 10.1177/00375497241261409
journals.sagepub.com/home/sim

Reachability analysis of FMI models
using data-driven dynamic sensitivity

Sergiy Bogomolov1, Cláudio Gomes2 , Carlos Isasa2, Sadegh Soudjani3,
Paulius Stankaitis4 and Thomas Wright2

Abstract
Digital twin is a technology that facilitates a real-time coupling of a cyber–physical system and its virtual representation.
The technology is applicable to a variety of domains and facilitates more intelligent and dependable system design and
operation, but it relies heavily on the existence of digital models that can be depended upon. In realistic systems, there is
no single monolithic digital model of the system. Instead, the system is broken into subsystems, with models exported
from different tools corresponding to each subsystem. In this paper, we focus on techniques that can be used for a
black-box model, such as the ones implementing the Functional Mock-up Interface (FMI) standard, formal analysis, and
verification. We propose two techniques for simulation-based reachability analysis of models. The first one is based on
system dynamics, while the second one utilizes dynamic sensitivity analysis to improve the quality of the results. Our
techniques employ simulations to obtain the model’s sensitivity with respect to the initial state (or model’s Lipschitz con-
stant) which is then used to compute reachable states of the system. The approaches also provide probabilistic guaran-
tees on the accuracy of the computed reachable sets that are based on simulations. Each technique requires different
levels of information about the black-box system, allowing the readers to select the best technique according to the cap-
abilities of the models. The validation experiments have demonstrated that our proposed algorithms compute accurate
reachable sets of stable and unstable linear systems. The approach based on dynamic sensitivity provides an accurate
and, with respect to system dimensions, more scalable approach, while the sampling-based method allows a flexible
trade-off between accuracy and runtime cost. The validation results also show that our approaches are promising even
when applied to nonlinear systems, especially, when applied to larger and more complex systems. The reproducibility
package with code and data can be found at https://github.com/twright/FMI-Reachability-Reproducibility.

Keywords
Reachability analysis, digital twins, Functional Mock-up Interface, dynamic sensitivity equations, Lipschitz constant

1. Introduction

Digital twins (DTs) are an emerging technology that

makes it possible to monitor, optimize, and control cyber–

physical assets using their virtual representation (kept as a

mirror of reality) in real-time.1 They provide critical ser-

vices such as state estimation, visualization, what-if analy-

sis, anomaly detection, and self-adaptation.

Because DT services rely heavily on the existence of

models of the cyber–physical systems2,3 (CPS), the

dependability of the DT is a direct consequence of how

much we can depend upon the models’ simulation. For

example, prior to adapting the controller of the CPS, the

DT needs to find the optimal and safe configuration by,

for example, running simulations with alternative config-

urations on future predicted scenarios, while checking that

safety properties are satisfied. If there is uncertainty in the

model parameters, as there often is in continuous and

hybrid system models whose parameters are identified

from sensor data, then we may be interested in computing

bounds that enclose all simulation results, based on the

possible parameter values, in a technique called reachabil-

ity analysis. An introduction and survey of the topic of

1School of Computing, Newcastle University, UK
2Department of Electrical and Computer Engineering, Aarhus University,

Denmark
3Max Planck Institute for Software Systems, Germany
4Department of Computing Science and Mathematics, University of

Stirling, UK

Corresponding author:

Paulius Stankaitis, Department of Computing Science and Mathematics,

University of Stirling, Cottrell Building, FK9 4LA, Stirling, Scotland, UK.

Email: paulius.stankaitis@stir.ac.uk

https://doi.org/10.1177/00375497241261409
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497241261409&domain=pdf&date_stamp=2024-07-25

reachability analysis are provided in the study by Althoff

et al.4 and an example application for DTs is presented in

the study by Wright et al.5

To compute reachable states of the system generally

requires knowing a model of the system, which for CPSs

can be hard to obtain or even unavailable because of the

myriad of modeling and simulation tools used in engineer-

ing practice. Fortunately, the industry has formulated stan-

dards that make it possible to represent and integrate black

box, IP-protected models. One such standard is the

Functional Mock-up Interface (FMI),6 which is currently

supported by more than 150 tools. Because of these rea-

sons, in this paper, we focus on a class of reachability

analysis techniques that are data-driven (i.e. they rely on

data generated from simulations), which can be applied to

black-box models. Although several data-driven reachabil-

ity analysis approaches have been proposed in the litera-

ture, they either do not provide probabilistic guarantees on

the completeness of the exploration, or discuss handle

coupled models.

1.1. Contribution

In this paper, we build upon our previous work7 and pro-

pose a new method for computing reachable states of

black-box coupled models. This reachability analysis

method leverages advanced FMI standard functionality for

retrieving partial derivatives of Functional Mock-up Unit

(FMU) variables and numerical differential system solvers

to solve dynamic sensitivity equations, which describe sys-

tem sensitivity to changes in their initial conditions. The

computed maximum sensitivity provides a scaling factor,

which together with a nominal initial state space trajectory

is used to compute approximate reachable sets.

In summary, the novel contributions of this paper are:

(1) a dynamic sensitivity-based reachability analysis

method of black-box models and (2) a method for com-

posing dynamic sensitivity equation systems from coupled

models implementing the FMI standard. The paper evalu-

ates the new approach against our previously introduced

data-driven method7 by comparing reachable sets com-

puted for linear and nonlinear dynamical systems. We also

validate our approaches against a leading model-based

reachability analysis tool—Flow*.8

The paper is structured as follows. The following

‘‘Related work’’ section discusses related work and posi-

tions our reachability analysis approach. After that, our

paper describes the preliminaries and the problem state-

ment of the paper. The main contributions of the paper are

presented in the ‘‘Reachability algorithms’’ section in

which we formally describe our proposed reachability

analysis and dynamic sensitivity equation composition

algorithms. The ‘‘Validation experiments’’ section

describes results obtained from comparing and validating

algorithms, as well as discusses limitations and

recommendations of the proposed methods. In the final

section, we summarize our findings and propose directions

for future work.

2. Related work

This paper extends our previous work,7 where we pro-

posed a data-driven method for computing the reachable

states of black-box models with probabilistic accuracy

guarantees, given a sufficient number of samples is used.

This reachability method was based on estimating a maxi-

mum Lipschitz constant by simulating a model from inde-

pendent and identically distributed (i.i.d.) initial conditions

and their perturbations. However, for higher-dimension

and more complex systems, the method requires a large

number of samples to over-approximate accurately the

reachable sets.

Over the years, the problem of computing the set of

reachable sets of a given system has received consider-

able attention. In this section, we attempt to summarize

this work and conclude with an argument for the novelty

of the current manuscript. There are two main methods

for reachability analysis: model-based and data-driven.

Model-based reachability analysis uses a mathematical

model of the system to compute reachable states from a

given set of possible initial states. Over the years, sev-

eral reachability tools have been developed, such as

SpaceEx,9 JuliaReach,10 XSpeed,11 and Flow*,8 to name

a few. The reachability methods have been widely used

in applications that range from formal system verifica-

tion to their synthesis.4 Reachability analysis is also at

the core of abstraction-based techniques for controller

synthesis in both deterministic systems12,13 and stochas-

tic models.14,15

We will focus on data-driven reachability analysis tech-

niques, which have also been proposed for scenarios when

a model of the system is unavailable or too complex, and

we will use the following axes to compare and position

related papers, as summarized in Table 1.

System-under-study (SUS): Denotes the kind of system

supported by the technique. Systems can be linear/

affine (L, the two are equivalent since one can trans-

form an affine system into a linear one through exten-

sion of the states); nonlinear (NL, the type of Equation

(1)); hybrid linear (HL, systems with different modes

but within each mode the dynamics are linear); and

hybrid (H, as in the most general hybrid automata).

Within the hybrid category, there are kinds of systems,

but we abstain from discerning those.

Modularity of SUS (MSUS): Represents the degree of

support for decoupled SUS. The categories are mono-

lithic (M) and decoupled (D). For example, systems that

are represented by communicating sub-models, like the

one presented in Figure 1, are decoupled.

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Information-required-from-SUS (IRS): Denotes the

degree of information that the technique requires from

the SUS. Possible categories are full knowledge (FK) of

the systems equations; partial knowledge (PK), where

for example, the Jacobian of the system can be queried

through an API, without the knowledge of the equa-

tions; and no knowledge (NK), where the model can be

simulated through an API, without any knowledge of

the equations.

Information-required-from-User (IRU): Denotes the

kind of information the user needs to specify. At the

very least, we have information on numerical tolerances

(NT), and on the opposite side, we have information on

dynamic invariants (DI).

Guarantees (G): Denotes the level of guarantees offered

by the technique. We can have reachability up to

numerical tolerance (NTG), probabilistic guarantees

(PG), and guarantees including numerical approxima-

tions, that is, full guarantees (FG).

2.1. Dynamic sensitivity-based reachability analysis

We begin with the works that are based on solving or esti-

mating the solution to the dynamic sensitivity equations,

and then using their solution to build the reachable set, as

introduced in Background and Problem Statement. Among

these, we highlight the methods described in the study by

Donzé and Maler,16 where a notion of expansion function

is introduced, which can be seen as the application of the

dynamic sensitivity to a given disturbance in the initial

condition (cf. Theorems 3 and 4 in the study by Donzé and

Maler16). The benefit of this method is that more simula-

tions can be run, and in fact, thanks to the dynamic sensi-

tivity information, the initial conditions can be iteratively

tried in a way that attempts to drive the system into an

unsafe state (to quickly falsify a safety property). In the

same way, more samples can be taken, if more accuracy is

needed. In the same paper, the technique was extended to

hybrid systems without reset actions (but reset actions

could be included, provided they are differentiable with

respect to their inputs). The extension requires that the

dynamic sensitivity of the jump time be computed as part

of the system, and uses results developed earlier in, for

example, the study by Hiskens and Pai.17 Later, Geng and

Hiskens18 revisits the jump conditions required to apply

second-order sensitivity analysis to hybrid systems (sec-

ond-order sensitivity analysis permits an approximation of

the flow around a nominal trajectory that will have an

error in the order of e3). The guarantees given are subject

to the numerical approximation errors made by the under-

lying solver library, and on how fine-grained the sampling

is, which is controlled by a tolerance parameter provided

by the user. This method has been implemented into the

Breach tool,19 and we classify it in Table 1 as requiring

full knowledge from the system because of its hybrid sys-

tems extension. For nonlinear systems, only partial knowl-

edge is required.

Another similar approach to sensitivity-based reachabil-

ity analysis is proposed in C2E2,20 which originally was

designed for continuous and switched systems and, in the

later paper,21 extended to handle hybrid systems as well.

Their work proposes a generic ‘‘discrepancy function,’’

Figure 1. Example double mass-spring-damper system.

Table 1. Positioning of the state of the art.

Paper SUS MSUS IRS IRU G

16 H M PK NT NTG
21 H M PK NT NTG
20 H M FK DI NTG
23 H M PK NT PG
25 H M FK NT NTG
26 Ha M FK NT NTG
28 NL M NK NT PG
29 NL M NK NT NTG
30 NL M NK NT NTG
31 NL M NK NT PG
32 NL D PKb NT FG
Our work NL D PK NT PG

SUS: system-under-study; MSUS: modularity of SUS; IRS: information-

required-from-SUS; IRU: information-required-from-user; PK: partial

knowledge; NT: numerical tolerances; NTG: numerical tolerance

guarantees; FK: full knowledge; DI: dynamic invariants; PG: probabilistic

guarantees; NL: nonlinear; NK: no knowledge; FG: full guarantees.
aRestricted to two continuous modes.
bSubmodels have to implement set-based reachability methods.

Bogomolov et al. 3

which provides a time-varying maximum distance bound

on any two trajectories originating from the initial set. As

far as we could assess, the notions of a discrepancy func-

tion and an expansion function are closely related, with

both capable of being generated from the dynamic sensi-

tivity equations of the system, or over-approximations of

it. The reader can see various methods for computing dis-

crepancy functions for different classes of models in the

study by Fan and Mitra,22 and the DryVR tool23 expresses

the problem of finding a discrepancy function as a prob-

lem of learning a linear separator. The tool also provides a

probabilistic accuracy guarantee on the computed discre-

pancy function, given a sampling complexity formula is

followed.

HS3V24,25 is a similar tool, which uses sampling and a

Lipschitz-based discrepancy function to estimate reachable

sets. Their approach also introduces a method called

dynamic simulations-spawning (s-spawning) to bound

error growth and adds new simulations to deal with dis-

crete jumps. It is worth mentioning a few other simulation-

based approaches26,27 that provide methods to compute a

time-varying function that provides a distance bound on

trajectories between the system and a simpler counterpart.

The simulations of the simpler model can be combined

with the time-varying function to yield reachable sets.

2.1.1. Optimization-based reachability analysis. The paper by

Xue et al.28 uses samples obtained from simulating a

black-box model to learn an underlying model by solving

a robust optimization problem, which provides probabilis-

tic model accuracy guarantees. Different template models

can be used for learning the black-box model (e.g. polyno-

mial functions). A similar approach is presented in work29

where the author’s approach uses sampled noisy data to

identify a set of models, which are then over-approximated

with zonotopes.

The paper30 presented a sampling-based reachability

analysis approach that is based on random set theory and

adversarial sampling. The main novelty of the work is uti-

lizing recent advances in deep learning to iteratively dis-

cover trajectories that help to converge the actual

reachable set. In other learning-based reachability analysis

work, the NeuReach tool31 was introduced that efficiently

computes reachable sets and provides a probabilistic accu-

racy guarantee.

While learning-based methods can improve the perfor-

mance of the reachability analysis, the main drawback is

that the underlying deep learning model has to be retrained

for different systems.

2.1.2. Decoupled reachability analysis. Finally, we highlight

the work by Coënt et al.,32 which acknowledges the need

for reachability analysis techniques that work in parallel

for de-coupled models, such as those commonly found in

co-simulation scenarios.33 In the aforementioned paper,

the authors introduce an interval-based reachability

method, which uses set-valued Runge–Kutta integration

methods.34 The reachability computation is done step-by-

step, advancing time after the reachable set of each step

has been computed. At each step, each sub-model is a

black-box simulation that computes the interval of outputs

based on the interval of inputs. All sub-models’ intervals

are then exchanged and the step is repeated until a fixed

point is reached. A method for ensuring the robust stability

of FMI co-simulation models has been presented in

paper.35

2.2. Novelty of contribution

As summarized in Table 1, compared to the state of the art,

the novelty of our contribution is in providing probabilistic

guarantees for decoupled black-box models.

3. Background and problem statement
3.1. Continuous time systems

We consider continuous-time systems, characterized by a

tuple S= X , x0, fð Þ, where X � R
n is the state space and

n the number of states in the system, x0 2 X represents the

initial state, and f : X ! X represents the vector field and

is assumed to be locally Lipschitz continuous (any small

changes in x result in bounded changes in f (x)). The evo-

lution of the state of S satisfies the following equation:

_x tð Þ= f t, x tð Þð Þ, x 0ð Þ= x0, ð1Þ

which, thanks to the local Lipschitz assumption, always

has a unique solution, regardless of the initial condition.

In order to represent the solution of Equation (1) as a

function of time t 2 Rø 0, and the initial state x0 2 X , we

use the notation u(t, x0) 2 X . For any finite simulation

time t 2 Rø 0, and for all t 2 ½0, t�, the continuous func-

tion u(t, x0) is a solution to Equation (1), and therefore

satisfies the following equation:

_u t, x0ð Þ= f t,u t, x0ð Þð Þ, ð2Þ

with u(0, x0)= x0. Finally, note that u(t, x0) is continuous
both in t and in x0.

3.2. Reachability analysis

Reachability analysis is a technique for computing the set

of all reachable states of the solution to Equation (1) for

each possible initial condition from a set X0 � X . The

reachable set Rt at time t can be defined formally as

follows:

Rt X0ð Þ= u t, x0ð Þ j x0 2 X0f g ð3Þ

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

To capture all reachable states, starting from the initial

time up to a given simulation time t, we construct a flow-

pipe, which is just the union of all reachable states up to t:

R½0, t� X0ð Þ=
[

t2 0, t½ �
Rt X0ð Þ ð4Þ

Reachability methods provide a powerful approach to

verifying safety requirements of dynamical systems under

uncertainty,4 and are supported in a range of tools such as

SpaceEx,9 Checkmate,36 and Flow*.8 Furthermore, to effi-

ciently and accurately over-approximate reachable sets,

different convex and nonconvex set representations have

been developed. We refer the reader to the aforementioned

works for more details on how to over-approximate the

reachable set in Equation (4).

3.3. Co-simulation and the FMI standard

Co-simulation is a technique where multiple black-box

simulators are coupled together (see the studies by Gomes

et al.33 and Fitzgerald et al.37 for introductions to the

topic). The difference between a black-box simulator and

a black-box model is that the simulator contains the sub-

model and approximates its numerical solution, given an

input signal. Since simulators are coupled in feedback

loops, the coupled solution is computed iteratively, mov-

ing forward in time and approximating the solution at each

new time point from the solution at previous time steps.

The FMI standard38 establishes the interface of the black-

box simulators, also called FMUs, in the nomenclature of

the standard. An individual FMU is comprised of a

description file (in XML), which declares visible-state

variables and other model information, and binaries that

implement the application programming interface to inter-

act with the FMU. Over the years, a number of well-

known modeling and simulation tools have been upgraded

(e.g. Simulink,39 OpenModelica40) or developed (INTO-

CPS tool41) to support FMI standard.

The mandatory interface functions, implemented by an

FMU denoted as S, are: doStep (S, H) (asks S to advance

time to t +H and estimate internal state and outputs at the

new time); setIn(S, u, v) (set the input of S identified by

u to the value v for the current time t); and getOut(S, y)

(get the value for the output of S identified by y for the cur-

rent time t).

A co-simulation scenario is a set of FMUs and a

description of how they are connected. It is often depicted

in a diagrammatic form, as Example 1 shows.

Example 1. Consider the canonical example of a double

mass-spring-damper system, depicted in Figure 1. The sys-

tem is decoupled into two different FMUs, with inputs and

outputs as depicted in the same figure. Then, with an inter-

face similar to the FMI standard, their co-simulation is

computed as illustrated in Algorithm 1.

In addition to the mandatory functions each FMU

implements, the FMI also adds a number of optional func-

tions, that can be optionally implemented by FMU export-

ing tools. From these, we highlight the functions that

allow one to compute partial derivatives. Neglecting effi-

ciency issues, we denote this function as getDer(S, x, y),

which returns ∂x
∂y
for the current time and state of s. These

will be used later in the section ‘‘Building sensitivity equa-

tions co-simulation scenarios’’ to build the dynamic sensi-

tivity equation system of a co-simulation scenario.

3.4. Problem statement

In this paper, we address the problem of computing reach-

able states of DT virtual models as formally defined in

Problem 1.

Problem 1. Given a black-box Digital Twin model of a

system S, initial set X 0, and time-bound T , compute an

approximation of the reachable set �R½0, T �(X0) using a finite

number of randomly simulated trajectories of S. Provide

the sample complexity of the computation, that is, the

required number of trajectories for achieving a certain

level of approximation with probabilistic confidence.

In the above problem statement, we assume that a

black-box model of the system S is available, which can

be used to generate sample trajectories from any initial

state. These sample trajectories are sufficient for applying

our first technique to solve the above problem. Our second

technique requires also having access to trajectories of the

dynamic sensitivity in the FMUs of the system.

3.5. Dynamic sensitivity equations

We define the dynamic sensitivity equations, also called

the variational equations or just sensitivity equations, of the

system in Equation (1) as the different derivatives of the n

Algorithm 1: Example co-simulation orchestration for
Example 1.

Inputs: A final simulation time tf > 0, a communication step
size H> 0, and FMUs S1 and H> 0
t 0
Initialize S1 and S2
while t< t� f do

doStep (S1, H)
doStep (S2, H)
setIn (S1, Fc, getOut (S2, Fc))
setIn (S2, xc, getOut (S1, x1))
setIn (S2, vc, getOut (S1, v1))
t t+H

end
Output: A value for each input/output computed at each time

t∈ ½0,tf �.

FMU: functional mock-up unit.

Bogomolov et al. 5

state variables with respect to the n initial conditions. For

example, for a system with one dimension, the dynamic

sensitivity equations represent how u(t, x0) changes as a

function of changes in the initial condition x0. We represent

this rate of change by the derivative du(t, x0)
dx0

.

For a system with n dimensions, we will represent the

state variable in each dimension i by xi, such that each

state x 2 X is represented by a vector x= ½x1, . . . , xn�T .
Furthermore, we will represent the restriction of the solu-

tion u(t, x0) to the state variable xi as ui(t, x0), so that

u(t, x0)= u1(t, x0), . . . ,un(t, x0)½ �T .
Given state variables xi and xj, we will use the short-

hand notation di, j(t, x0) to denote the derivative of ui(t, x0)
with respect to xj, in (the initial value for xj) as follows:

di, j t, x0ð Þ= ∂ui t, x0ð Þ
∂xj, in

.

The dynamic sensitivity is a matrix represented as

follows:

S t, x0ð Þ=
d1, 1 t, x0ð Þ . . . d1, n t, x0ð Þ

..

. . .
. ..

.

dn, 1 t, x0ð Þ . . . dn, n t, x0ð Þ

2
64

3
75 ð5Þ

The dynamic sensitivity equations shown next represent

an extension of Equation (1) with differential equations

that relate S(t, x0) to its time derivative _S(t, x0) (derived

below) as follows:

_x tð Þ= f x tð Þð Þ, x 0ð Þ= x0,

_S tð Þ= J x tð Þð Þ � S tð Þ, S 0ð Þ= I ,
ð6Þ

where we have omitted the dependency to x0 of each solu-

tion to improve readability, � is the matrix product, and the

following equation:

J x tð Þð Þ=

∂f1 x tð Þð Þ
∂x1

. . . ∂f1 x tð Þð Þ
∂xn

..

. . .
. ..

.

∂fn x tð Þð Þ
∂x1

. . . ∂fn x tð Þð Þ
∂xn

2
664

3
775 ð7Þ

represents the Jacobian matrix of the continuous-time sys-

tem and ∂fi(x(t))
∂xj

denotes the partial derivative of the ith

state derivative with respect to the jth state (recall that f is

a vector function).

To derive Equation (6), we differentiate S(t) with

respect to time. Each entry _di, j(t, x0) of _S(t) is therefore

expanded as follows:

_di, j t, x0ð Þ= d

dt

∂

∂xj, in
ui t, x0ð Þ (expand notation)

=
∂

∂xj, in

d

dt
ui t, x0ð Þ swap derivative orderð Þ

=
∂

∂xj, in
fi t,u t, x0ð Þð Þ apply Equation (2)ð Þ

=
dfi t,u t, x0ð Þð Þ

dx
� ∂u t, x0ð Þ

∂xj, in
(apply chain rule)

= ∂fi t,u t, x0ð Þð Þ
∂x1

. . . ∂fi t,u t, x0ð Þð Þ
∂xn

h i
|ffl{zffl}

ith row of J (x(t))

∂u1 t, x0ð Þ
∂xj, in

..

.

∂un t, x0ð Þ
∂xj, in

2
6664

3
7775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
jth column of S(x(t))

Taking all entries of _S(t) together yields the equation
_S = J � S. Note that each entry depends on the full state solu-
tion of the original system u(t, x0) and therefore the differen-
tial equation needs to be solved together with the original

equations of the system. A system with n dimensions will

therefore be extended to a system with n+ n2 dimensions.

Example 2. Consider the system given by the differential

equation _x= � x+ sin (t) x(0)= x0, and its solution

given by u(t, x0)= x0e
�t + 0:5 sin (t)� cos (t)ð + e�tÞ

(Taken from the study by Robinson42). The solution is

plotted for different initial conditions in Figure 2. Since

the initial conditions stop making a difference in the sys-

tem (because of the periodic forcing function), we expect

the sensitivity to vanish after about 6 s.

Applying Equation (6), the expanded system is as

follows:

Figure 2. Example solutions for the system in Example 2.

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

_x= � x+ sin tð Þ; x 0ð Þ= x0

_S = � S; S 0ð Þ= 1,
ð8Þ

with solution:

u t, x0ð Þ= x0e
�t + 0:5 sin tð Þ � cos tð Þ+ e�tð Þ

S tð Þ= e�t
ð9Þ

plotted in Figure 3.

Example 3. Consider a spring pendulum whose behavior

is given by the following dynamical system:

_r
_u
_vr

_vu

2
664

3
775=

vr

vu

rv2u + 9:8 cos u� 2 r � 1ð Þ
� 2vrvu + 9:8 sin u

r

2
664

3
775 ð10Þ

The sensitivity matrix is therefore as follows:

S xð Þ=

dr, r dr, u dr, vr
dr, vu

du, r du, u du, vr
du, vu

dvr , r dvr , u dvr , vr
dvr , vu

dvu, r dvu, u dvu, vr
dvu, vu

2
664

3
775 ð11Þ

As we show next, the Jacobian, J x(t)ð Þ in Equation (6),

of this system is as follows:

J (x)=

0 0 1 0

0 0 0 1

v2u � 2 �9:8 sin u 0 2rvu
2vrvu + 9:8 sin u

r2
� 9:8

r
cos u � 2

r
vu � 2

r
vr

2
664

3
775
ð12Þ

As we have seen before we can get the expression of _S,
the time derivative of the dynamic sensitivity matrix,

using _S = J � S. We get the following 16 equations, which

depend on the original system equations in Equation (10):

_dr, r = dvr , r,
_dr, u = dvr , u, _dr, vr

= dvr , vr
, _dr, vu

= dvr , vu

_du, r = dvu, r,
_du, u = dvu, u, _du, vr

= dvu, vr
, _du, vu

= dvu, vu

_dvr , r = v2u � 2
� �

dr, r � 9:8 sin udu, r + 2rvudvu, r

_dvr , u = v2u � 2
� �

dr, u � 9:8 sin udu, u + 2rvudvu, u

_dvr , vr
= v2u � 2
� �

dr, vr
� 9:8 sin udu, vr

+ 2rvudvu, vr

_dvr , vu
= v2u � 2
� �

dr, vu
� 9:8 sin udu, vu

+ 2rvudvu, vu

_dvu, r =C r, uð Þdr, r � K r, uð Þdu, r �
2

r
vudvr , r �

2

r
vrdvu, r

_dvu, u =C r, uð Þdr, u � K r, uð Þdu, u �
2

r
vudvr , u �

2

r
vrdvu, u

_dvu, vr
=C r, uð Þdr, vr

� K r, uð Þdu, vr
� 2

r
vudvr , vr

� 2

r
vrdvu, vr

_dvu, vu
=C r, uð Þdr, vu

� K r, uð Þdu, vu
� 2

r
vudvr , vu

� 2

r
vrdvu, vu

where:

C r, uð Þ = 2vrvu + 9:8 sin u
r2

, K r, uð Þ = 9:8
r
cos u

3.6. Interpretation of sensitivity equations

We demonstrate here how dynamic sensitivity equations

can be used to approximate the reachable set R½0, t�(X0) in
Equation (4). First note how the distance between the sys-

tem solutions in Figure 3 for Example 2 is correlated to the

sensitivity solution. Since u(t, x0) is a continuous function

of x0, we can perform a Taylor expansion around the value

x0 as follows:

u t, x0 + eð Þ’u t, x0ð Þ+ du t, x0ð Þ
dx0|fflfflfflfflffl{zfflfflfflfflffl}

S t, x0ð Þ

e+O e2
� �

ð13Þ

where the O(e2) denotes the order of the magnitude for

the higher order terms in the rest of the Taylor series.

Equation (13) gives us a direct method to estimate tra-

jectories around a nominal system solution u(t, x0).
Note that the truncated terms are expected to be in the

order of e2, which will be small in comparison with the

first two terms of the Taylor expansion for small values

of e.

Example 4. Following Example 2, we know S(t)= e�t, so

we can use it to estimate other trajectories around u(t, 1).
The result is plotted in Figure 4 where the dotted trajectories

represent estimates, and the solid represent the actual solu-

tions. Note that there is no error in the estimates because the

system is linear, and therefore the higher order terms in

Equation (13) vanish.

To summarize, for an expanded dynamic sensitivity

system as in Equation (6), and a given initial set X0 of

potential initial conditions, the reachable set Rt(X0) in

Figure 3. Example solutions for the system in Example 2
including the sensitivity.

Bogomolov et al. 7

Equation (3) can be approximated using the following

procedure:

1. Discretize X0 into smaller hyper-rectangles

X1, . . . ,Xn such that the distance between any

point contained in each hypercube and its center is

small enough (generally smaller than 1 because of

the truncated term in Equation (13)).

2. For each X j, compute the nominal solution at its

center, and apply Equation (13) to estimate all tra-

jectories of interest in its vicinity (for linear and

affine systems, it suffices to cover all the extremi-

ties of X j).

3. Because of continuity, any set of states between a

trajectory and the estimated trajectories in its vici-

nity are reachable, so we can form flow pipes unit-

ing the nominal trajectory and all trajectories of

interest in its vicinity.

4. Rt(X0) is then computed by the union of all flow

pipes.

The above approach does not necessarily generate over-

approximations of the reach set for nonlinear systems since

the higher-order terms in the Taylor expansion are elimi-

nated without appropriate quantification of the induced

error. In the following sections, we provide two techniques

that are based on random trajectories of the system and

provide probabilistic correctness guarantees.

3.7. Robust convex programs

This section provides the mathematical details for robust

convex programs (RCPs) and data-driven approximations

of their solution. The content of this section is provided in

its full generality. We will utilize Theorem 1 and Theorem

2 presented in the sequel to establish the correctness of

our data-driven framework. The reader can refer to the

papers43,44 for the full exposition of the results presented

in this section.

Let T � R
q be a compact convex set for some q 2 N

and c 2 R
q be a constant vector. Let D be the space of

uncertainty with (D,B,P) denoting the uncertainty prob-

ability space (B is the Borel sigma-algebra on D and P a

probability measure that assigns probabilities to sets in B).
Let g : T 3D ! R be a measurable function, which is

convex in the first argument for each d 2 D, and bounded

in the second argument for each u 2 T . The RCP is defined

as follows:

RCP:
minucTu

s:t: u 2 T and g u, dð Þ4 0; 8d 2 D

�
ð14Þ

An example of the RCP used in our work is presented

in Equation (23). Computationally tractable approxima-

tions of the optimal solution of the RCP given by Equation

(14) can be obtained using scenario convex programs

(SCP) that only require gathering finitely many samples

from the uncertainty space.44

Let (di)
N
i= 1 be N i.i.d. samples drawn according to the

probability measure P. The SCP corresponding to the RCP

given by Equation (14) strengthened with g ø 0 is defined

as follows:

SCPg :
minu cTu

s:t: u 2 T , and
g u, dið Þ+ g 4 0 ; 8i 2 f1, 2, . . . ,Ng

8<
: ð15Þ

An example of the SCP used in our work is presented in

Equation (24). We denote the optimal solution of RCP given

by Equation (14) as u�RCP and the optimal solution of SCPg

given by Equation (15) as u�SCP. Note that u�RCP is a single

deterministic quantity but u�SCP is a random quantity that

depends on the i.i.d. samples (di)
N
i= 1 drawn according to P.

The RCP given by Equation (14) is a challenging optimiza-

tion problem since the cardinality of D is infinite and there-

fore the optimization has an infinite number of constraints.

In contrast, the SCP given by Equation (15) is a convex opti-

mization with a finite number of constraints for which effi-

cient optimization techniques are available. The following

two theorems provide sample complexity results for connect-

ing the optimal solutions of the SCPg to that of the RCP.

Theorem 1. Let b 2 (0, 1) be a confidence value and

e 2 (0, 1) a given tolerance.43 Select the number of sam-

ples N according to:

N ø
1

e

e

e� 1

� �
log

1

b
+ q

� 	
ð16Þ

where e is Euler number and q is the dimension of the

decision vector u 2 T . Then the solution of Equation (15)

with g = 0 computed by taking N i.i.d. samples (di)
N
i= 1

from P is a feasible solution for the constraint:

Figure 4. Example estimated solutions for the system in
Example 2 around nominal trajectory ’(t,1), as detailed in
Example 4.

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

P g u, dð Þ4 0ð Þø 1� e ð17Þ

with confidence (1� b).
The above theorem states that if we take the number of

samples appropriately, we can guarantee that the solution

satisfies the robust constraint in Equation (14) on all the

domain d 2 D except for a small subset that has measure

at most e.

Theorem 2. Assume that the function g : T 3D ! R

d 7!g(u, d) in Equation (14) is Lipschitz continuous with

respect to d 2 D uniformly in u 2 T with Lipschitz con-

stant Ld and let h : ½0, 1� ! Rø 0 be a strictly increasing

function such that:44

P Oe dð Þð Þø h eð Þ, ð18Þ

for every d 2 D and e 2 ½0, 1�. Let u�RCP be the optimal

solution of the RCP in Equation (14) and u�SCP the optimal

solution of SCPg in Equation (15) with:

g = Ldh�1 eð Þ ð19Þ

computed by taking N i.i.d. samples (di)
N
i= 1 from P. Then

u�SCP is a feasible solution for the RCP with confidence

(1� b) if the number of samples is at least N(e,b), where:

N e,bð Þ : = min N 2 N j
Xq�1
i= 0

N

i

� 	
ei 1� eð ÞN�i 4b

()
,

ð20Þ

with q being the dimension of the decision vector u 2 T .

The above theorem is stronger than Theorem 1 in guar-

anteeing that the solution will be feasible for the RCP in

Equation (14) on the whole domain d 2 D. This is at the
cost of requiring the knowledge of an upper bound on the

Lipschitz constant of the function g and also being more

conservative in the required number of samples. The confi-

dence (1� b) is a common feature of these two theorems

and is due to the nature of the solution that depends on the

sampled dataset (di)
N
i= 1.

4. Reachability algorithms

In this section, we describe two different algorithms for

computing reachable states of black-box FMI models. The

two algorithms compute a scaling factor S, which is then

used to compute edges of the reachable set as follows:

§ t, xcð Þ6S tð Þ h=2k k‘

where §(t, xc) denotes a central trajectory and h denotes

the size of the discretized initial state-space. This section

also describes a curve-fitting approach for estimating an

upper boundary of the scaling factor and a method for

building up the sensitivity matrix from the FMI’s depen-

dency graph.

The first reachability algorithm uses simulated trajec-

tories of a black-box model and SCP to compute a maxi-

mum Lipschitz constant of the black-box model. The

computed Lipschitz constant together with a central trajec-

tory is then used for computing an interval-based approxi-

mation of the reachable set. The alternative algorithm

replaces the estimation of the model’s Lipschitz constant

in the previous algorithm with a solution of sensitivity

equations, which describe the impact of perturbations of

the system’s initial conditions on the trajectories of the

system.

These algorithms are presented in detail in the follow-

ing sections.

4.1. Sampling-based algorithm

For computing the reachable set from a set of initial states

X0, a common approach is to partition the set X0 into a

union of hyper-rectangles fX j, j= 1, 2, . . . ,mg of size

h= ½h1,h2, . . . ,hn� by gridding the state space. Then for

each X j, we find a vector Lj(t) 2 R
n such that:

§ t, x0ð Þ � § t, x00ð Þj j 4 Lj tð Þ x0 � x00k k‘

8x0, x00 2 X j, t ø 0
ð21Þ

where §(t, x0) and §(t, x00) are the state trajectories of the

system at time t started from x0, x
0
0 2 X j, and j � j denotes

the element-wise absolute value. In the next step, the

reachable set from each X j is computed as the hyper-

rectangle Yj with edges as follows:

§ t, xcj

� �
6Lj tð Þ h=2k k‘, ð22Þ

which gives a hyper-rectangle with center §(t, xcj) and size

Lj(t) � h. The state xcj is the center of the initial hyper-

rectangle X j. The union of all Yj, j= 1, 2, . . . ,m gives an

over-approximation of the reachable set from X 0. The

implementation of the above procedure requires

Algorithm 2: Sampling-based reach set computation

Inputs: System as a black box, time instance t, initial set
X0 ⊂R

n

Select discretization h= η1,η2, . . . ,ηn½ � with ηi > 0
Partition X0 into hyper-rectangles X j, j= 1,2, . . . ,m, of size η

with center xcj

for j= 1,2, . . . ,m do
Select N according to Equations (16) or (20)
Take N samples x0i uniformly from X j

Obtain trajectories &(t,x0i) and &(t,xcj) from the black box
model
Solve the SCPγ in Equation (24) to find Lj(t)
Define ~Yj as a hyper-rectangle with center &(t,xcj) and size
Lj(t) h=2k k∞

end
Output: Sampling-based reach set ~Y : = ∪ j

~Yj

Bogomolov et al. 9

computing §(t, xcj) , which is possible using a black-box

model of the system.

4.1.1. RCP formulation and sampling. The inequality

Equation (21) used in the reachability analysis can written

as the RCP:

RCP :

min cTLj tð Þ
s:t: c= 1; 1; . . . ; 1½ �, Lj(t)ø 0, and
§ t, x0ð Þ � § t, xcj

� �

� Lj tð Þ x0 � xcj

�� ��
‘
4 0,

8x0 2 X j:

8>><
>>:

ð23Þ

We can define the associated SCPg:

SCPg :
min cTLj tð Þ
s:t: c= 1; . . . ; 1½ �, Lj tð Þø 0, 8i 2 1, . . . ,Nf g,
j§ t, x0ið Þ � § t, xcj

� �
j � Lj tð Þ x0i � xcj

�� ��
‘
+ g 4 0,

8<
:

ð24Þ

where x0i 2 X j are taken randomly from a probability dis-

tribution P.

Once the SCPg in Equation (24) is solved, the

sampling-based reachable set from X j is computed as the

hyper-rectangle ~Yj with edges §(t, xcj)6Lj(t) h=2k k‘ where

Lj(t) is obtained by solving Equation (24). The next theo-

rem uses the results of the section ‘‘Robust convex pro-

grams’’ for picking the number of samples N to connect
~Yj with the true reachable set.

Theorem 3. If ~Yj is computed using the solution of

Equation (24) with g = 0 and N selected according to

Equation (16), then with confidence (1� b), the set ~Yj

covers the whole true reachable set except for a small set

with probability measure at most e.

If ~Yj is computed using the solution of Equation (24)

with N selected according to Equation (20), then with con-

fidence (1� b), the set ~Yj covers the whole true reachable

set.

The full algorithm for our sampling-based reachability

analysis is presented in Algorithm 2.

4.2. Lipschitz constant via extreme value theorem

For estimating Ld in Theorem 2 and making use of it in

Theorem 3, we should estimate an upper bound for the

fraction:

D x, x0ð Þ : =
k § t, xð Þ � § t, x0ð Þ k
k x� x0 k ð25Þ

that holds for all x, x0 2 X j. We follow the line of reason-

ing in the studies by Weng et al.45 and Wood and Zhang46

and use the extreme value theorem for the estimation.

Let us fix a d . 0 and assign uniform distribution to the

pair (x, x0) over the domain x, x0 2 X j, k x� x0 k 4 d
�

.

Then D (x, x0) is a random variable with an unknown

cumulative distribution function (CDF). Based on the

assumption of Lipschitz continuity of the system, the sup-

port of the distribution of D (x, x0) is bounded from above,

and we want to estimate an upper bound for its support.

We take n samples from (x, x0) and compute n samples

D1,D2, . . . ,Dn for D (x, x0). The CDF of max D1,f
D2, . . . ,Dng is called the limit distribution of D (x, x0). The
Fisher–Tippett–Gnedenko theorem says that if the limit

distribution exists, it can only belong to one of the three

families of extreme value distributions—the Gumbel class,

the Fréchet class, and the Reverse Weibull class. These

CDFs have the following forms:

Gumbel TypeIð Þ:G sð Þ= exp � exp
s� a

b

� �� �
where s 2 R:

Fr�echet TypeIIð Þ:G sð Þ=
0 ifs \ a

exp � s�a
b

� ��c� �
ifs4 a

(

Rvr:Weibull TypeIIIð Þ: G sð Þ= exp � a�s
b

� �c� �
ifs \ a

1 ifs4 a

(

where a 2 R, b . 0, c . 0 are, respectively, the location,

scale, and shape parameters.

Among the above three distributions, only the Reverse

Weibull class has support bounded from above. Therefore,

the limit distribution of D (x, x0) will be from this class and

Algorithm 3: Lipschitz constant estimation using Reverse
Weibull distribution

Inputs: System as a black box, time instance t, initial set
X j ⊂R

n

Parameters: δ> 0, number of samples n,m
for k= 1,2, . . . ,m do

Take n samples (xi, x0i) uniformly from the set
x,x0 ∈X j, k x � x0 k ≤ δ
�
Compute (xi,x

0
i), i= 1,2, . . . ,nf g using Equation (25) and

trajectories from the black-box model
Define Lk = maxi (xi, x0i)

end
Fit a Reverse Weibull distribution to the dataset
L1,L2, . . . ,Lmf g

Get the location, scale and shape parameters of the fitted
distribution
Output: Estimated Lipschitz constant as the location parameter
of the fitted distribution

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

the location parameter a is such an upper bound. As a

result, we can estimate the location parameter of the limit

distribution of D (x, x0) to get an estimation of the Lipschitz

constant.

A procedure for estimating the Lipschitz constant is

presented in Algorithm 3. This uses obtained Lipschitz

constants to compute approximate reachable sets. For each

state of the system, a single Lipschitz constant value is

obtained from a previously sampled set. In this work, we

considered two operations for obtaining a final Ls (x, t): a
maximum value and a value produced via curve-fitting

and the extreme value theorem.47 The algorithm then com-

putes a central trajectory of the model by simulating it

from the set of initial values which are midway between

the lower and upper limits of the initial set.

Remark. The estimated Lipschitz constant from

Algorithm 3 can also be used directly for estimating the

reachable sets. Unfortunately, this quantity is just an esti-

mation and will converge to the true Lipschitz constant in

the limit. When it is computed with a finite number of

samples, it is not associated with a quantitative closeness

guarantee. In contrast, using the vector Lj(t) for reachabil-
ity computations is more likely to give less conservative

reach sets with formal probabilistic closeness guarantees.

4.3. Sensitivity-based algorithm

In this section, we describe an alternative algorithm, which

uses solutions of dynamic sensitivity equations to replace

scaling of the initial region with a Lipschitz constant fac-

tor Lj(t), with rescaling based on the sensitivity matrix

S(xin, t).
The algorithm similarly partitions initial region X0 into

a union of hyper-rectangles fX j, j= 1, 2, . . . ,mg of size
h= ½h1,h2, . . . ,hn�. The algorithm then requires obtain-

ing a system of sensitivity equations _S(t) and solving them

numerically together with black-box system _x(t) from an N

number of randomly sampled initial conditions x0i within

each hyper-rectangle X j.

The reachability algorithm then over-approximates the

image Yj of the hyper-rectangle X j, by first computing

expansion vectors:

ji = ½ji
1, . . . , ji

n� wherejik = S(t, x0i)j j � (h=2)T

which use the sensitivity matrix S(t, x0i) (or rather, its

element-wise absolute value S(t, x0i)j j) to compute the

maximum expansion in each direction of the sample point

x0i. The method then takes the element-wise maximum

jmax = ½maxN
i= 1 ji

1, . . . , maxN
i= 1 ji

n�, which is used to

compute the edges of Yj by expanding around the central

trajectory §(t, xcj).

The full algorithm is described in Algorithm 4.

4.4. Building sensitivity equations co-simulation
scenarios

In this section, we describe how to extend Algorithm 4 to

handle networks of FMUs implementing the FMI

interface.

Given the network structure of FMUs, in order to get

the Jacobian matrix required to compute the sensitivity

matrix, we need a way to differentiate a variable in one

FMU with respect to a variable in another FMU (recall

Equation (6)). For that reason, we build a dependency

graph before the sampling starts. The vertex of this graph

are the state variables of each FMU, their time derivatives,

and the input and output variables. The edges represent the

dependency of the target on the source. For example, given

the system and implementation in Figure 1, its dependency

graph is depicted in Figure 5.

Remark. If a dependency graph has a cycle, a variable

depends on itself. This is not a typical behavior of systems

in the form of Equation (1) and is therefore outside the

scope of this paper.

We can use the dependency graph to know what com-

putations we need to do in order to calculate a derivative,

as follows. Given variables a and b, let D denote all cycle-

free paths from a to b. The derivative of a with respect to

b is as follows:

da

db
=
X
p2D

Yjpj�2
i= 0

∂p i+ 1½ �
∂p i½ � , ð26Þ

Algorithm 4: Sensitivity-based reach set computation

Inputs: Time instance t, initial set X0 ⊂R
n

Select discretization h= η1,η2, . . . ,ηn½ � with ηi > 0
Partition X0 into hyper-rectangles X j, j= 1,2, . . . ,m, of size h
with center xcj

Acquire system of dynamic sensitivity equations _S(t)
for j= 1,2, . . . ,m do

Select N according to Equations (16) or (20)
Take N samples x0i uniformly from X j

Obtain central trajectory &(t,xcj) and sensitivity matrix S(t,x0i)
from the black-box model
Compute expansion vectors ξi = ½ξi

1, . . . ,ξi
n� where

ξi
k = S(t,x0i)j j · (h=2)T

Compute maximum expansion vector
ξmax = ½maxN

i= 1 ξi
1, . . . ,maxN

i= 1 ξi
n�

Define ~Yj as a hyper-rectangle with center &(t,xcj) and size ξmax

end
Output: Sampling-based reach set ~Y : = ∪ j

~Yj

Bogomolov et al. 11

where, given path p, jpj denotes its length and p½n� denotes
the nth element of p.

For example, in Figure 5,
d _v1

1

dx1
1

is given as follows. There

are two paths: x11 ! _v11 and x11 ! x21 ! F2
c ! F1

c ! _v11.
Hence:

d _v11
dx11

=
∂ _v11
∂x11

(1stpath)

+
∂x21
∂x11

∂F2
c

∂x21

∂F1
c

∂F2
c

∂ _v11
∂F1

c

(2ndpath)

ð27Þ

In order to compute the sensitivity matrix, we initialize

it to an identity matrix of the correct dimension. After that,

each sample step is a co-simulation run, where we com-

pute the Jacobian at every co-simulation step, calling a

function that computes every partial derivative that makes

an element of the Jacobian matrix J (x(t)) using Equation

(26). Once we have the Jacobian for time t, we estimate

the dynamic sensitivity matrix using a numerical solver.

For simplicity, we use the Forward Euler method:

S(t +H)= S(t)+ _S(t) � H = S(t)+ J (x(t)) � S(t) � H ,

where _S(t) is computed as in Equation (6) and H is the co-

simulation step-size parameter. We provide a formalized

summary of the algorithms in Algorithm 5.

5. Validation experiments

This section presents validation exercises that evaluate our

reachability algorithms as presented in the previous

section. The validation exercises cover both affine dyna-

mical systems and nonlinear systems and aim to evaluate

the conservativeness of the computed reachable sets and

the associated computation time. We also obtain reachable

sets (and computation time) produced by the model-based

reachability tool Flow* and compare them against ones

produced by our methods. To select nonlinear system

benchmarks and Flow* parameters, we followed a well-

known verification competition ARCH.48

5.1. Experiment setup

All timing results in this section were measured on an HP

EliteBook 840 G7 with an Intel Core i5-10310U processor

under Ubuntu 22.04 (Linux 5.14.0). For the methods

described in this paper, the results are based on a prototype

implementation in Python. In particular, we relied on the

SciPy49 solve_ivp function and the LSODA solver50

for solving dynamical systems (with an absolute tolerance

parameter of atol = 1026 and a relative tolerance para-

meter rtol = 1023), while SCP optimization problems

were solved via the CVXPY library51,52 with the para-

meter g = 0. Comparison results and timings for Flow*
were produced by Flow* toolbox.

5.1.1. Affine systems. We can start to evaluate the perfor-

mance of our method on Linear/Affine Initial Value

Problems of form:

d

dt
x tð Þ=Ax tð Þ+ b; x 0ð Þ 2 x0 ð28Þ

with state matrix A 2 R
n 3 n and offset vector b 2 R

n, and

interval vector initial region x0 2 IR
n. While linear sys-

tems pose a significantly easier reachability challenge than

general nonlinear systems—in this case, sensitivity analy-

sis is exact, while Flow* and SpaceEx both provide very

Algorithm 5: Compute the sensitivity matrix of a system in
the FMI standard

Input: A set of FMUs FS and their inter-connections, the
communication step size H, the final simulation time tf > 0.
Initialize S and J to the identity matrix
t 0
while t< tf do

Exchange data among all FMUs
Compute J using Equation (26)
for all F ∈ FS do

doStep F,Hð Þ
end
S S+ J · S * H
t t+H

end
Output: The dynamic sensitivity matrix S after an arbitrary
number of steps.

FMI: functional mock-up interface; FMU: functional mock-up unit.

Figure 5. The dependency graph example of the mass spring
damper example.

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

efficient special-purpose reachability algorithms—they

allow us to effectively evaluate how well the methods of

this paper approximate a given linear system’s dynamics,

since these are well understood and admit explicit

solutions.

Sample reachability results for different classes of lin-

ear systems are shown in Figure 6. We can see that Flow*
and sensitivity-based reachability analysis both produce

indistinguishable flowpipes, while applying reachability

analysis based on the Lipschitz constant computed from

sampled trajectories alone gives a coarser reachable set

estimation shown.

5.2. Lipschitz constant estimation accuracy

To assess the overall accuracy of our methods, we will con-

sider uniformly randomly selected N -dimensional Affine

Systems of the form Equation (28), restricted such that

A 2 ½�1, 1�N , b 2 ½�1, 1�, and x0 � ½�1, 1�N . We will

consider separately the classes of stable systems (those for

which every eigenvalue of A has a negative real part) and

unstable systems (those for at least one eigenvalue of A has

a positive real part), and take 100 systems of each class.

We will assess how accurately each of the different

methods captures the dynamics of the underlying system

based on the vector of Lipschitz constants, which they use

to compute reachable sets. While the SCP optimization

directly computes a vector LSCP(t) of Lipschitz constants

for the system, we are also able to compute a similar vec-

tor of Lipschitz constants from the sensitivity matrix as

Lsens(t) ¼D c S(t)j j where c= ½1, . . . , 1� and Mj j is the

element-wise absolute value of the matrix M . and

considering the accuracy of each method to estimate the

Lipschitz constant of the system over-approximate the sys-

tem dynamics. We will compare each of these approxima-

tions to the true vector of Lipschitz constants (with respect

to �k k‘) for the system, which we can compute using the

general solution of a linear ODE as, L(t)= c exp (At)j j:
Then we may measure the relative absolute error of an

approximated Lipschitz constant vector L0(t) at a given

time point t as follows:

RAE ¼D L0 tð Þ � L tð Þk k2
L tð Þk k2

:

Then, we may estimate the overall performance by tak-

ing the geometric mean relative absolute error (GMRAE;

The geometric mean is preferred over the mean when

aggregating error rates due to the latter’s sensitivity to out-

liers,53 such as those arising from numerical errors when

computing the RAE of small quantities.) of multiple

sampled relative absolute errors RAEi via the formula:

GMRAE ¼D
Yn

i= 1

RAEi

 !1
n

:

In the special case of two-dimensional (2D) systems,

Figure 7 shows the evolution of the GMRAE of the

Lipschitz constant vector estimate produced using dynami-

cal sensitivity analysis, and SCP optimization for varying

numbers of samples. We see that the relative error from

SCP optimization decreases with an increasing number of

samples, and is roughly consistent over the whole

Figure 6. Comparison of reachability from sampled Lipschitz constants with Flow* and Sensitivity Analysis results for a randomly
generated 2D stable system (left), an unstable system (middle), and an oscillator (right) from the unit initial region [− 1, 1]2.
Numerical simulations (gray) for 100 randomly sampled initial conditions are shown for comparison.

Bogomolov et al. 13

simulation time. In addition, the relative error of the

method is similar between stable and unstable systems;

this result is somewhat surprising given that typical

Lipschitz constants for random unstable systems can be

orders of magnitude larger than those of stable systems

(and, indeed, the absolute error of the method will be cor-

respondingly larger for the same number of samples).

Figure 8 shows the trade-off between the total runtime of

each method and the relative error achieved. We observed

a relationship between the number of samples and the rela-

tive error improvement in the relative error trailing off

after 80 samples. Finally, we observed that, as expected,

dynamical sensitivity analysis (with a single sampled sen-

sitivity matrix) approximates the true Lipschitz constant

vector almost perfectly for linear systems, and provides by

far the best accuracy/runtime trade-off for 2D systems.

In addition, Figure 9 shows how the runtime and rela-

tive error of each method varies with the dimension of the

system, based on 100 randomly sampled stable and

unstable system for dimensions 1 through 6. We can see

that the runtime of each method increases exponentially

with the system dimension and that the rate of increase of

sampling runtime increases with the number of samples,

while the runtime of dynamic sensitivity analysis increases

significantly more rapidly than the SCP optimization-

based approximation with any of these numbers of sam-

ples. However, dynamic sensitivity consistently produced

the best approximation of the system Lipschitz constant

vector, and indeed, its relative error decreased with the

dimension of the system. This suggests that the dynamic

sensitivity equations are a reliable method of estimating

the Lipschitz constant of linear systems, with consistent

accuracy regardless of system dimension, while sampling

offers a flexible cost/accuracy trade-off for higher-

dimensional systems.

5.2.1. Nonlinear systems. This section compares our pro-

posed algorithms for computing reachable sets and vali-

dates them against a model-based reachability analysis

tool—Flow*. Let us start by considering 2D nonlinear Van

Der Pol system as follows:

_x tð Þ= y tð Þ
_y tð Þ= 1� x tð Þ2

� �
� y� x

(
ð29Þ

Figure 10 compares the reachable set for the initial set

[1.1, 2.4] 3 [2.35, 3.45] computed using by Algorithms

2–4 and Flow*. The top figures show reachable sets pro-

duced by sensitivity-based Algorithm 4 (blue curve),

Flow* (red curve) and some randomly sampled trajectories

(gray curves) for x, y states of the Van Der Pol system

respectively. Flow* was not able to produce reachable sets

over the whole time horizon ½0, 5� with the given initial

region.

The rest of the section considers four additional non-

linear models with varying number of dimensions: coupled

Van Der Pol (four-dimensional (4D)), Rossler System

(three-dimensional (3D)), Spring Pendulum (4D, model

from the Dynamic Sensitivity Equations section) and

Biological Model (seven-dimensional (7D)). We evaluate

the runtime and flowpipe volume accuracy produced by

Algorithms 2 and 4. The latter is measured by using

Equation (30) as follows:

A=
XT

t= 0

100� Vol RS tð Þð Þ � Vol RF tð Þð Þ
Vol RF tð Þð Þ 3 100

� 	� 	
ð30Þ

where Vol(RS(t)) and Vol(RF(t)) are volumes of reach-

able sets produced, respectively, by one of our algorithms

Figure 7. Errors of different methods of Lipschitz estimation at
different time points between 1.0 and 5.0 for stable and unstable
random 2D linear systems.

Figure 8. Comparison of total runtime against GMRAE for
stable and unstable random 2D linear systems.

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

and Flow* at time t with d size step. The metric measures

an accumulated proportional volumetric difference

between two flowpipes (e.g. negative A would indicate

that in comparison to Flow* one of our algorithms pro-

duces a less conservative flowpipe). From Figure 11, we

can observe that the sampling-based algorithm computes a

more conservative flowpipes, however, this comes at a

cost of requiring more samples, hence computation time,

to guarantee an over-approximation, especially for larger

initial regions.

Similar findings can be observed from Figure 12 in

which we summarize our accuracy results from three mod-

els for different number of samples: Van Der Pol initial

state:x1 = ½1:1, 1:4�, y1 = ½2:35, 2:45�, coupled Van Der

Pol parameters x1, 2 = ½1:25, 1:55�, y1, 2 = ½2:35, 2:45�,
T = ½0, 5�, while Rossler system x= ½0:7, 1� and y, z= 1;

all systems analyzed for ½0, 5� s. We decided to exclude

results from Spring Pendulum and Biological models as

Flow* was only able to produce reachable sets from small

initial sets and for short time horizons, resulting in minus-

cule flowpipe volumes.

The runtime validation experiments are summarized

in Figure 12. In these experiments, we again increased

the number of samples for Algorithms 2 and 4 and

observed reachable set computation time. We also

include the runtime performance of the Flow* tool.

Important to note that at this stage, we did not attempt to

improve the computational performance of the proposed

methods.

Figure 12 clearly shows that Algorithm 2 is consider-

ably slower in comparison to Algorithm 4 and does not

scale well with an increased number of samples. The main

reason for this is the computation overhead of solving

SCPs. We can see this in Figure 13 in which we demon-

strate the proportion of runtime it takes to sample and

solve the SCP in Algorithm 2 and solve sensitivity equa-

tions in Algorithm 4 for different models and numbers of

samples. Except for the case of the Biological model, sol-

ving sensitivity equations in Algorithm 4 makes up a sig-

nificantly smaller proportion of computation time, while

the opposite is true in the case of obtaining maximum

Lipschitz constant with SCPs in Algorithm 2.

In short, the results presented in this section have shown

that our algorithms produce reasonably conservative reach-

able sets for nonlinear systems. Although, with the current

algorithm implementation, their runtimes do not scale well

with the increased number of samples, we have shown

accurate results can be produced even with a fairly small

number of samples. The main limitation of the Algorithm

2 is the need for a larger number of samples to provide

probabilistic accuracy guarantees, while solving SCP is a

major contributor to a large runtime. The sensitivity-based

algorithm provides much less conservative results but

offers a more scalable approach.

Figure 9. Errors and runtimes of different methods of Lipschitz estimation at time for t= 5:0 randomly sampled linear systems of
up to six dimensions.

Bogomolov et al. 15

5.2.2. Sensitivity matrix co-simulation. In order to validate

the results of the algorithms given in ‘‘Building sensitivity

equations co-simulation scenarios,’’ we are going to use

the mass spring damper system visualized in Figure 1. The

equations that describe this system’s behavior are provided

in Equation (31):

_x1
_v1
_x2
_v2
Fc

2
66664

3
77775=

v1
�c1�x1�d1�v1 +Fc

m1

v2
�c2�x2�F2

m2

cc � x2 � x1ð Þ+ dc � v2 � v1ð Þ

2
66664

3
77775 ð31Þ

We are going to solve this system together with the

coupled sensitivity equations using the SciPy solve ivp

solver. In Figure 14, we validate the value of dx1, x1 (an ele-

ment of the sensitivity matrix computed with Algorithm 5)

against the analytical solution, with a time step of 0:01.
We will then compute the error between the sensitivity

matrix computed by Algorithm 5 and the solve ivp solver

function as follows:

e tð Þ= S tð Þ � S0 tð Þk k2 ð32Þ

where S(t) denotes the sensitivity matrix computed by the

Algorithm 5, S0(t) denotes the sensitivity matrix computed

by the solve_ivp function, and k �k2 denotes the 2-norm

for matrices. In Figure 15, we show different error func-

tions for different step sizes, which shows that the smaller

the step size, the smaller the error.

We can see in the results that our approximation is close

enough to the solve_ivp function. Figure 14 shows that

both functions are almost indistinguishable. Furthermore,

Figure 15 shows that by decreasing the step size of the co-

simulation scenario we can reduce the error, which allows

us to get as close as we want to standard numerical

algorithms.

5.2.3. Validation discussion. In this section, we explored the

ability of each of our methods to accurately and efficiently

approximate the dynamics of black-box models and to con-

servatively compute reachable sets.

Figure 10. Reachable set comparison of the nonlinear Van Der Pol system for the initial set [1.1, 2.4] × [2.35, 3.45] for T = ½0,5�.
Top: reachable set produced by a sensitivity-based algorithm for x state (left) and y state (right), Bottom: reachable sets produced
by a sampling-based algorithm for x state (left) and y state (right). Both algorithms were used with 100 samples.

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

First, we saw that in the case of linear systems, the

sampling-based approach is able to approximate the sensi-

tivity of the system to its initial conditions (as captured in

the vector of Lipschitz constants), and the accuracy of this

approximation can be increased by increasing the number

of samples. This is consistent with Theorem 3, which spe-

cifies the number of samples required to achieve a given

probability of over-approximating the true Lipschitz con-

stants and, consequently, the true reachable set. We also

saw that for linear systems, dynamic sensitivity analysis

gives an almost exact approximation of the true Lipschitz

constants regardless of system dimension, although its run-

time increases rapidly with the dimension of the system.

For nonlinear systems, both sampling and dynamic sen-

sitivity analysis give approximate results, while their con-

servativeness can both be increased by increasing the

number of samples used. For most of our systems, we saw

that dynamic sensitivity analysis gives reasonable results

for a reasonably low runtime. However, the sampling-

based approach is able to give more conservative results

for higher numbers of samples and is also able to give

probabilistic guarantees on containment.

We also saw how we can do sensitivity analysis to

decoupled FMUs, by dynamically tracking the sensitivity

matrix of the system. This is limited by the fact that our

current co-simulation technique relies on the Forward

Euler method, which produces larger errors than more

competitive numerical integration methods. The use of

better numerical methods is important to reduce these

errors, but this would impose additional requirements on

the FMUs being simulated. In practice, we observed rela-

tively small errors between the sensitivity matrices com-

puted via this method and the conventional open-box

method using the LSODA solver.

6. Conclusion and future work

Ensuring the dependability of DTs relies on proving that

the formal system models underpinning them are safe. In

some cases, accurate models of complex systems are too

difficult to obtain or unavailable due to IP protection (as

facilitated by the FMI standard). In this work, we develop

methods to provide formal analysis for models featuring

uncertainty or unavailability of their dynamics, by introdu-

cing algorithms for performing reachability analysis of

black-box models. We were particularly focused on the

FMI standard-based black box dynamical system models.

The developed data-driven and dynamic sensitivity–based

reachable set computation methods have been thoroughly

Figure 11. Volume error exercise that demonstrates the number of samples effects on volume accuracy. We consider the
following number of samples [10, 20, 50, 75, 100, 150, 200, 400, 500, 750, 1000].

Bogomolov et al. 17

evaluated for linear and nonlinear dynamical systems, and

results have shown that conservative reachable sets can be

computed. Although, as discussed, for large numbers of

samples and high-dimensional systems, the runtime per-

formance of the algorithms offers scope for improvement

(particularly the sampling-based algorithm), we saw that

algorithms do not require a large number of samples to

produce accurate reachable sets.

There are several interesting directions for future work:

1. We could investigate extending each of the meth-

ods proposed in this paper from reachability analy-

sis, to monitoring Signal Temporal Logic

properties of the system’s behavior following the

methodology of Wright and Stark.54 This would

allow us to verify whether black box models sat-

isfy high-level temporal logic specifications, while

accounting for the impact of uncertainty on the

result of verification via three-valued logic and

probabilistic guarantees.

2. We could investigate the application of each of the

methods to parametric black-box models, as a way

to soundly account for the impact of uncertain

model parameters on the behavior of the system.

3. Our sampling-based approach can in general be

applied to hybrid models as long as trajectories are

continuous functions of the initial state. To apply

the dynamic sensitivity–based approach to hybrid

automata, we would like to investigate how

dynamic sensitivity equations could be obtained

for a black-box hybrid system.

4. In our future work, we also aim to explore the inte-

gration of our proposed method with the DT sys-

tem and replace simulations with data obtained

from the physical asset. A similar approach has

been presented in work by Van Acker et al.55

Figure 12. Runtime validation exercise that demonstrates the number of samples effects to computation time of reachable sets for
different nonlinear models.

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Figure 13. The proportion of runtime in Figure 12 to perform sampling and solving SCP in Algorithm 2, and sample and solve
sensitivity equations in Algorithm 4.
The rest of the runtime is used for computing flowpipe.

Figure 14. Comparison of δx1 ,x1 computed by Algorithm 5 and
the solve_ivp ODE solver.

Figure 15. Errors between the sensitivity matrix computed by
Algorithm 5 and solve_ivp method with varying time steps
sizes.

Bogomolov et al. 19

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

Thomas Wright gratefully acknowledges the support of the UK

EPSRC for grant EP/V026801/2, UKRI Trustworthy

Autonomous Systems Node in Verifiability. The work of Sadegh

Soudjani is supported by the following grants EPSRC EP/

V043676/1, EIC 101070802, and ERC 101089047.

ORCID iDs

Cláudio Gomes https://orcid.org/0000-0003-2692-9742

Paulius Stankaitis https://orcid.org/0000-0003-1785-4021

References

1. Tao F, Zhang H, Liu A, et al. Digital twin in industry: state-

of-the-art. IEEE T Ind Inform 2019; 15: 2405–2415.

2. Feng H, Gomes C, Thule C, et al. Introduction to digital twin

engineering. In: Proceedings of the 2021 annual modeling

and simulation conference (ANNSIM), Fairfax, VA, 19–22

July 2021. New York: IEEE.

3. Feng H, Gomes C, Gil S, et al. Integration of the Mape-K

loop in digital twins. In: Proceedings of the 2022 annual

modeling and simulation conference (ANNSIM), San Diego,

CA, 18–20 July 2022. New York: IEEE.

4. Althoff M, Frehse G and Girard A. Set propagation tech-

niques for reachability analysis. Annu Rev Control Robot

Auton Syst 2021; 4: 369–395.

5. Wright T, Gomes C and Woodcock J. Formally verified

self-adaptation of an incubator digital twin. In: Proceedings

of the leveraging applications of formal methods, verifica-

tion and validation practice: 11th international symposium

(ISoLA 2022; Part IV), Rhodes, 22–30 October 2022, pp.

89–109. Berlin; Heidelberg: Springer-Verlag.

6. Junghanns A, Gomes C, Schulze C, et al. The functional

mock—up interface 3.0—new features enabling new applica-

tions. In: Linkoping electronic conference proceedings, 20–

24 September 2021. Linköping: Linköping University

Electronic Press.

7. Bogomolov S, Fitzgerald J, Soudjani S, et al. Data-driven reach-

ability analysis of digital twin FMI models. In: Proceedings of

the international symposium on leveraging applications of for-

mal methods (ISOLA), Rhodes, 22–30 October 2022, pp. 139–

158. Berlin; Heidelberg: Springer-Verlag.

8. Chen X, Ábrahám E and Sankaranarayanan S. Flow*: an

analyzer for non-linear hybrid systems. In: Sharygina N and

Veith H (eds) Computer aided verification. Berlin;

Heidelberg: Springer, 2013, pp. 258–263.

9. Frehse G, Guernic CL, Donzé A, et al. SpaceEx: scalable

verification of hybrid systems. In: Gopalakrishnan G and

Qadeer S (eds) Computer aided verification. Berlin;

Heidelberg: Springer, 2011, pp. 379–395.

10. Bogomolov S, Forets M, Frehse G, et al. JuliaReach: a tool-

box for set-based reachability. In: Proceedings of the 22nd

ACM international conference on hybrid systems: computa-

tion and control (HSCC’19), Montreal, QC, Canada, 16–18

April 2019, pp. 39–44. New York: Association for

Computing Machinery (ACM).

11. Ray R, Gurung A, Das B, et al. XSpeed: accelerating reach-

ability analysis on multi-core processors. In: Proceedings of

the 11th international Haifa verification conference (HVC

2015; LNCS, Volume 9434), Haifa, 17–19 November 2015,

pp. 3–18. Berlin; Heidelberg: Springer.

12. Kazemi M, Majumdar R, Salamati M, et al. Data-driven

abstraction-based control synthesis. Nonlinear Anal: Hybri

2024; 52: 101467.

13. Majumdar R, Salamati M and Soudjani S. Neural

abstraction-based controller synthesis and deployment. ACM

T Embed Comput S 2023; 22: 141.

14. Banerjee T, Majumdar R, Mallik K, et al. A direct symbolic

algorithm for solving stochastic Rabin games. In:

Proceedings of the international conference on tools and

algorithms for the construction and analysis of systems,

Munich, 2–7 April 2022, pp. 81–98. Berlin; Heidelberg:

Springer.

15. Majumdar R, Mallik K, Schmuck AK, et al. Symbolic con-

trol for stochastic systems via finite parity games. Nonlinear

Anal: Hybri 2024; 51: 101430.

16. Donzé A and Maler O. Systematic simulation using sensitiv-

ity analysis. In: Proceedings of the 10th international confer-

ence on hybrid systems: computation and control

(HSCC’07), Pisa, 3–5 April 2007, pp. 174–189. Berlin;

Heidelberg: Springer.

17. Hiskens IA and Pai M. Trajectory sensitivity analysis of

hybrid systems. IEEE T Circuits: I 2000; 47: 204–220.

18. Geng S and Hiskens IA. Jump conditions for second-order

trajectory sensitivities at events. In: Proceedings of the 2018

IEEE international symposium on circuits and systems

(ISCAS), Florence, 27–30 May 2018, pp. 1–5. New York:

IEEE.

19. Donzé A. Breach, a toolbox for verification and parameter

synthesis of hybrid systems. In: Touili T, Cook B and

Jackson P (eds) Computer aided verification. Berlin;

Heidelberg: Springer, 2010, pp. 167–170.

20. Duggirala PS, Mitra S and Viswanathan M. Verification of

annotated models from executions. In: Proceedings of the

2013 11th ACM international conference on embedded soft-

ware (EMSOFT), Montreal, QC, Canada, 29 September–4

October 2013, pp. 1–10. New York: IEEE.

21. Duggirala PS, Mitra S, Viswanathan M, et al. C2E2: a verifi-

cation tool for stateflow models. In: Baier C and Tinelli C

(eds) Tools and algorithms for the construction and analysis

of systems. Berlin; Heidelberg: Springer, 2015, pp. 68–82.

22. Fan C and Mitra S. Data-driven safety verification of com-

plex cyber-physical systems. In: Al Faruque M and Canedo

A (eds) Design automation of cyber-physical systems. Cham:

Springer International Publishing, 2019, pp. 107–142.

23. Fan C, Qi B, Mitra S, et al. DryVR: data-driven verification

and compositional reasoning for automotive systems. In:

Majumdar R and Kunčak V (eds) Computer aided verifica-

tion. Cham: Springer International Publishing, 2017, pp.

441–461.

24. Ren H and Kumar R. Step simulation/overapproximation-

based verification of nonlinear deterministic hybrid system

with inputs. IFAC PapersOnLine 2015; 48: 21–26.

25. Ren H and Kumar R. Simulation-based verification of

bounded-horizon safety for hybrid systems using dynamic

20 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

number of simulations. IET Cyber Phys Syst 2019; 4: 250–

258.

26. Girard A and Pappas GJ. Approximate bisimulations for non-

linear dynamical systems. In: Proceedings of the 44th IEEE

conference on decision and control, Seville, 15 December

2005, pp. 684–689. New York: IEEE.

27. Kapinski J, Krogh BH, Maler O, et al. On systematic simula-

tion of open continuous systems. In: Maler O and Pnueli A

(eds) Hybrid systems: computation and control. Berlin;

Heidelberg: Springer, 2003, pp. 283–297.

28. Xue B, Zhang M, Easwaran A, et al. PAC model checking

of black-box continuous-time dynamical systems. IEEE T

Comput Aid D 2020; 39: 3944–3955.

29. Alanwar A, Koch A, Allgöwer F, et al. Data-driven reach-

ability analysis from noisy data. IEEE T Automat Contr

2023; 68: 3054–3069.

30. Lew T and Pavone M. Sampling-based reachability analysis:

a random set theory approach with adversarial sampling. In:

Kober J, Ramos F and Tomlin C (eds) Proceedings of the

2020 conference on robot learning: proceedings of machine

learning research (PMLR), vol. 155. Berlin; Heidelberg:

Springer, 2020, pp. 2055–2070.

31. Sun D and Mitra S. NeuReach: learning reachability func-

tions from simulations. In: Fisman D and Rosu G (eds) Tools

and algorithms for the construction and analysis of systems.

Cham: Springer International Publishing, 2022, pp. 322–337.

32. Coënt AL, Dit Sandretto JA and Chapoutot A. Guaranteed

master for interval-based cosimulation. Softw Syst Model

2021; 20: 711–724.

33. Gomes C, Thule C, Broman D, et al. Co-simulation: a sur-

vey. ACM Comput Surv 2018; 51: 49.

34. Gajda K, Jankowska M, Marciniak A, et al. A survey of inter-

val Runge-Kutta and multistep methods for solving the initial

value problem. In: Wyrzykowski R, Dongarra J, Karczewski

K, et al. (eds) Parallel processing and applied mathematics.

Berlin; Heidelberg: Springer, 2008, pp. 1361–1371.

35. Braun R and Fritzson D. Numerically robust co-simulation

using transmission line modeling and the Functional Mock-

up Interface. Simulation 2022; 98: 1057–1070.

36. Chutinan A and Krogh BH. Verification of polyhedral-

invariant hybrid automata using polygonal flow pipe approx-

imations. In: Vaandrager FW and Van Schuppen JH (eds)

Hybrid systems: computation and control. Berlin;

Heidelberg: Springer, 1999, pp. 76–90.

37. Fitzgerald J, Larsen PG and Verhoef M. Collaborative

design for embedded systems. Berlin; Heidelberg: Springer,

2014.

38. Blochwitz T, Otter M, Arnold M, et al. The functional

mockup interface for tool independent exchange of simula-

tion models. In: Proceedings of the 8th international

Modelica conference, Dresden, 20–22 March 2011.

Linköping University Press, pp. 105–114.

39. The MathWorks. Simulink user’s guide. Natick, MA: The

MathWorks, 2021.

40. Fritzson P, Aronsson P, Pop A, et al. OpenModelica—a free

open-source environment for system modeling, simulation,

and teaching. In: Proceedings of the 2006 IEEE conference

on computer aided control system design, Munich, 4–6

October 2006, pp. 1588–1595. New York: IEEE.

41. Larsen PG, Fitzgerald J, Woodcock J, et al. Integrated tool

chain for model-based design of Cyber-Physical Systems:

the INTO-CPS project. In: Proceedings of the 2nd interna-

tional workshop on modelling, analysis, and control of com-

plex CPS (CPS Data), Vienna, 11 April 2016, pp. 1–6. New

York: IEEE.

42. Robinson RC. Scalar ordinary differential equations.

Technical report, 2013, https://sites.math.northwestern.edu/

;clark/dyn-sys/scalar.pdf

43. Tempo R, Calafiore G and Dabbene F. Randomized algo-

rithms for analysis and control of uncertain systems: with

applications. London: Springer Science+Business Media,

2012.

44. Esfahani PM, Sutter T and Lygeros J. Performance bounds

for the scenario approach and an extension to a class of non-

convex programs. IEEE T Automat Contr 2015; 60: 46–58.

45. Weng TW, Zhang H, Chen PY, et al. Evaluating the robust-

ness of neural networks: an extreme value theory approach.

In: Proceedings of the international conference on learning

representations, Vancouver, BC, Canada, 30 April–3 May

2018.

46. Wood G and Zhang B. Estimation of the Lipschitz constant

of a function. J Global Optim 1996; 8: 91–103.

47. De Haan L, Ferreira A and Ferreira A. Extreme value theory:

an introduction, vol. 21. Berlin; Heidelberg: Springer, 2006.

48. Frehse G, Althoff M, Schoitsch E, et al. (eds). Proceedings of

the 9th international workshop on applied verification of con-

tinuous and hybrid systems (ARCH22). EasyChair, 2022 (also

published in Epic Ser Comput 2022; 90: 44–57). https://easy-

chair.org/publications/paper/b6cN

49. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fun-

damental algorithms for scientific computing in Python. Nat

Methods 2020; 17: 261–272.

50. Hindmarsh AC. ODEPACK, a systemized collection of ODE

solvers 1992, https://www.osti.gov/biblio/145724

51. Diamond S and Boyd S. CVXPY: a Python-embedded mod-

eling language for convex optimization. J Mach Learn Res

2016; 17: 83.

52. Agrawal A, Verschueren R, Diamond S, et al. A rewriting

system for convex optimization problems. J Control Decis

2018; 5: 42–60.

53. Armstrong JS and Collopy F. Error measures for generaliz-

ing about forecasting methods: empirical comparisons. Int J

Forecasting 1992; 8: 69–80.

54. Wright T and Stark I. Property-directed verified monitoring

of signal temporal logic. In: Deshmukh J and Nickovic D

(eds) Runtime verification: 20th international conference,

RV 2020, Los Angeles, CA, October 6–9, 2020. Berlin;

Heidelberg: Springer-Verlag, 2020, pp. 339–358.

55. Van Acker B, De Meulenaere P, Vangheluwe H, et al.

Validity frame–enabled model-based engineering processes.

Simulation 2024; 100: 185–226.

Author biographies

Sergiy Bogomolov is an Associate Professor in Cyber–

Physical Systems at Newcastle University (UK). His

research focuses on the development of algorithms and

tools to model and analyze complex concurrent and

Bogomolov et al. 21

distributed systems. In particular, Sergiy aims to provide

scalable solutions for the automatic analysis of cyber–

physical systems using the techniques on the interface of

the areas of verification, control, and artificial intelligence.

Cláudio Gomes is an Assistant Professor at the

Department of Electrical and Computer Engineering at

Aarhus University, Denmark. His research interests

include co-simulation and digital twin engineering.

Carlos Isasa is a PhD student at the Department of

Electrical and Computer Engineering at Aarhus University,

Denmark. His research focuses on formal verification

applied to cyber–physical systems, with a focus on self-

adaptive systems.

Sadegh Soudjani is a Senior Research Group Leader at

the Max Planck Institute for Software Systems, Germany.

Previously, he was the Director of the AMBER Group at

Newcastle University, United Kingdom, and a Reader

(UK equivalent for Professor) in Cyber–Physical Systems

at Newcastle University. His research interests are formal

model-based and data-driven synthesis, abstraction, and

verification of complex dynamical systems with applica-

tion in cyber-physical systems, particularly, involving

smart grids and energy networks.

Paulius Stankaitis is a Lecturer in AI/Data Science at the

University of Stirling (UK). He obtained his PhD degree

from Newcastle University (United Kingdom) in the area

of formal methods. His current research focuses on devel-

oping formal methods tools and techniques for trustworthy

AI, cyber–physical systems, and Digital Twins.

Thomas Wright is a Post-Doctoral researcher in

Formal Methods at Aarhus University. He completed his

PhD in the Edinburgh Laboratory for Foundations of

Computer Science in 2022 on formal languages and

model-checking techniques for biochemical networks.

Since then he has worked on developing theorem prov-

ing and model checking techniques for Cyber–Physical

and Robotic systems.

22 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

