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A B S T R A C T

Veterinary surveillance frequently requires study design for freedom-from-disease testing, specifying a sample 
size to balance higher statistical power with larger sample sizes against increased research and ethics costs, with 
the recognition that tests can generate false positive and negative results: i.e., tests exhibit imperfect sensitivity 
and specificity. In this paper, we revisit the mathematics behind exact calculations of sample size in terms of the 
binomial and hypergeometric distributions, and present a new algorithm – implemented and available to use in R 
as a Shiny application with a graphical user interface – to determine sample size for practical situations. Often, 
sample size calculations are based upon simulations or approximations, but we show here that exact calculations 
are feasible. In addition, we relax the liberal assumption – which provides conservative sample-size estimates – 
that sensitivity and specificity are known exactly, and instead assume both are Beta distributed with known 
hyperparameters. The application presented here was originally designed as a learning tool for students and is 
now made available for wider use.

1. Introduction

A common task in veterinary epidemiology is surveillance for 
freedom from disease using fixed sample sizes and a diagnostic test of 
known sensitivity and specificity. Recent examples of designed sampling 
studies include surveillance of brucellosis in small ruminants in Algeria 
(Ramdani et al., 2022) and for zoonotic Coxiella burnetii in European 
bison in Poland (Krzysiak et al., 2021). Maximum sample size is limited 
only by the population size, but it is important to appreciate the 
diminishing returns of increased sampling – notably the standard error 
of a mean shrinks only according to the square root of sample size. 
Furthermore, there is the potential for diagnostic tests to give incorrect 
results at individual or herd level, and the costs of increasing testing in 
terms of finance and welfare (Bacchetti et al., 2011; Krzywinski and 
Altman, 2013). When designing sampling schemes for this purpose, it is 
necessary to estimate sample sizes based on prevalence estimates and a 
known population size. There is therefore a circular argument problem – 
intrinsic to power calculations: In order to plan to determine prevalence, 
you need to know something about the prevalence! There is also often an 
assumption that sensitivity and specificity are known exactly, and the 
more general case is considered below, where both quantities have some 
uncertainty in their estimation.

Sample size calculations for freedom from disease were previously 

devised by Cameron and Baldock (1998), and their approach is imple-
mented by Ausvet (Sergeant, 2018), and (Paterson et al., 2020) . This 
method, amongst other aspects of epidemiological sampling, is recently 
reviewed by Stevenson (2021) and Meletis et al. (2024), who consider 
surveillance aspects such as time-series use in testing, structured pop-
ulations, and the costs of potentially getting the answer wrong. Where a 
test has specificity below 100 %, some accommodation needs to be made 
for occasional false positives in the sample: The number of required 
positive tests is known in this case as the cutpoint. Cameron and Baldock 
(1998) devise an algorithm to solve the two-dimensional problem of 
determining both sample size (below, n) and the required cutpoint 
number of reactors (below, c). Their approach is developed further by 
Johnson et al. (2003), who relax the assumption that the population 
prevalence, test sensitivity, and specificity are perfectly known, and use 
a Bayesian approach applying Beta-distribution priors to both quanti-
ties, an approach also taken by Booth et al. (2023) while considering 
disease prevelance and sample size in wild-animal surveillance.

Frequently, sample size estimates are based upon approximations or 
simulation, as the exact calculation is thought to be complex or resource 
intensive. These approximations include substituting the binomial dis-
tribution for the hypergeometric distribution or rules of thumb based on 
simple approximations to the more complex mathematics. However, this 
assumption of complexity is worth revisiting with increased computer 
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processing power year on year, and increased ease of vectorising the 
equations in statistical programming environments such as R (R Core 
Team, 2024). As Gautam et al. (2019) argue, approximations – partic-
ularly where inherited from earlier work and poorly attributed – can 
lead to spurious results and are usually no longer necessary.

One such approximate method is to deal with confidence intervals of 
proportions by using approximations such as the normal distribution. 
Vallejo et al. (2013) note such approximations tend to be inaccurate 
close to the ends of the distribution at probabilities of zero or one, which 
is exactly the part of the distribution we are trying to work with when 
considering freedom from disease as a potentially rare event. Other 
concerns, such as the difference between sampling with and without 
replacement, and correction factors which can be applied to account for 
this, are reviewed by Fosgate (2009).

As part of development of teaching materials in epidemiology for 
MSc programmes here at the university, a Shiny application (Chang 
et al., 2024) has been developed that provides a web-based interface to 
an updated calculator for sample-size for freedom-from-disease testing, 
incorporating uncertainty for sensitivity and specificity. It is effectively 
exact, subject to some shortcuts in dealing with a large matrix outer 
product. This is combined with a new simple R algorithm to solve for 
required sample size. Shiny is an R package which provides a graphical 
user interface (GUI) which can be server deployed, run directly locally, 
or run locally from remotely hosted source files. This is not the first use 
of Shiny in developing epidemiological tools: Alba et al. (2017) have 
developed a Shiny application – Optisample – to optimise herd sampling 
from repeated samples with imperfect tests, with probability of freedom 
from disease as the key output. Thus, Optisample is the reverse calcula-
tion from what we are building here. SRUC (2024) also maintain a se-
lection of Shiny applications online, including one for sample size for 
freedom from disease, however only for perfect sampling.

This paper takes the approach that exact statistical approaches are 
sometimes simpler to explain, and in the possession of sufficient 
computing power, easier to explore. Also, stemming from the fact that 
this paper emerged from a teaching project, we take pains here to 
explain the logic as clearly as possible given the fairly lengthy equations.

2. Methods

2.1. Distribution of positive test results

In this paper, we start with the approach taken by Cameron and 
Baldock (1998), and present the equations in three forms: first, in 
simplified form as probability distributions to demonstrate ease of 
vectorisation and implementation; second, in full with the probabilities 
explicitly calculated; and third, the corresponding R code. The code for 
the Shiny application is made available on GitHub at https://github. 
com/pinkmongoose/ShinySampleSize. With the Shiny library loaded, 
this application can be run by the single line of R code:

runGitHub[redacted for blind peer review] 

"ShinySampleSize","Pinkmongoose")

We start with a sample of individuals of size n drawn from a wider 
population of size N where the number of true positive and negative 
individuals meeting our case definition (as determined by a gold stan-
dard) are fixed at n+ and n− = n − n+. (Therefore, at this stage we 
consider a particular sample from the population, rather than the po-
tential range of sample prevalences found due to the sample itself being 
randomly drawn from this wider population.) A complete list of the 
mathematical symbols used for the models is given in Table 1. In this 
case, on application of an imperfect test, the distributions of the numbers 
of positive test results in the two subsets of gold-standard true-positive 
and gold-standard true-negative individuals (respectively t+ and t− , 
superscripts representing the nature of the sample, not our current test 
result), are both binomial and determined by the sensitivity 1 − β and 

specificity 1 − α of the test used, where β is the false negative rate and α is 
the false positive rate. 

t+(n+) ∼ Binom(n+,1 − β)

t+(n+)i =

(
n+

i

)

(1 − β)iβn+− i
(1) 

where i indexes across the distribution. 

t− (n+) ∼ Binom(n − n+,α)

t− (n+)i =

(
n − n+

i

)

αi(1 − α)n− n+− i (2) 

In R, this is naturally vectorised, resulting in a single expression to 
calculate the whole of each distribution vector. We assume individual 
test results are independent and thus these two distributions are inde-
pendent. In this case, we can multiply the two vectors to produce a 
matrix outer product, and sum the reverse diagonals to obtain the dis-
tribution of total positive test results – both true and false – in the whole 
sample, t. This is the convolution of the two distributions (1) and (2). In 
standard equation format, this operation looks a little different. 

t(n+)k = (t+ ∗ t− )k =
∑k

i=0
t+i t−k− i

=
∑k

i=0

(
n+

i

)

(1 − β)iβn+− i

(
n − n+

k − i

)

αk− i(1 − α)n− n+− k+i

(3) 

The range for i only needs to cover i ∈ {0…k} because either i or k − i 
are out of range otherwise. In terms of computer code, this stage of 
identifying the diagonal is one that is not easily performed without 
resorting to iterating over loops, which loses some of the efficiency of 
working with vectorised operations. Where sample size n is large, and 

Table 1 
Model parameters, outcomes, and internal variables.

Symbol Description Domain

Parameters  
N Population (herd) size {1, 2…∞ }
p Fixed prevalence: proportion infected 0≤x ≤ 1
1 − β Test sensitivity 0 ≤x ≤ 1
1 − α Test specificity 0 ≤x ≤ 1
1 − Breq Desired herd sensitivity 0 ≤x ≤ 1
1 − Areq Desired herd specificity 0 ≤x ≤ 1
Hyperparameters  
η+ Beta sensitivity prior: test positives on 

true positives
0 < x

θ+ — test negatives on true positives 0 < x
η− Beta specificity prior: test positives on 

true negatives
0 < x

θ− — test negatives on true negatives 0 < x
Internal variables  
n+ Sampled individuals which are true 

positive
{0, 1…∞ }

n− — true negative {0, 1…∞ }
t+ Positive test results within sampled 

positives
Pr(x), x ∈ {0, 1… 
n+}

t− — within sampled negatives Pr(x), x ∈ {0, 1… 
n− }

t — within whole sample t+*t− Pr(x), x ∈ {0, 1… 
n}

T — across average sample of infected herd Pr(x), x ∈ {0, 1… 
N}

T0 — across average sample of uninfected 
herd

Pr(x), x ∈ {0, 1… 
N}

i, j, k, m Index variables {0, 1…∞ }
Outcomes  
n Sample size {1, 2…∞ }
c Cutpoint number of positive tests {0, 1…n}
1 − B Achieved herd sensitivity 0 ≤x ≤ 1
1 − A Achieved herd specificity 0 ≤x ≤ 1
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neither n+ or n − n+ are small, the size of n+(n − n+) can in turn be large. 
To simplify this multiplication, we observe that the probability density 
of t+ and t− is in most cases near zero in the case of very large n, and for 
the elements of the outer product, these near-zero regions are even more 
noticeable. As an approximation, we therefore restrict this multiplica-
tion to the centre of mass of the probability distribution for both dis-
tributions, excluding the extremes of the tails by iterating through the 
centre 99.8 % for each. The tails of the binomial distribution are easily 
calculated in R by using the qbinom function, and they do not need to be 
searched for programmatically. This slightly goes against the ‘exact’ 
philosophy of this paper, however the exact approach can be specified in 
the application options, at the expense of speed.

2.2. Hypotheses for prevalence

Up to this point, we have considered a fixed number of sample 
positives n+. In this section, we consider two alternate scenarios: disease 
present in the population, and disease absent. As with Johnson et al. 
(2003) we reverse the framing of the hypotheses compared with 
Cameron and Baldock (1998) such that our null hypothesis H0 is disease 
absence, and the alternative hypothesis H1 is disease presence, so strictly 
this is formulated as testing for the presence of disease, not absence. Our 
sample sensitivity then becomes 1 − B where B is the likelihood of failing 
to reject an incorrect null hypothesis (type-II error). And our sample 
specificity then becomes 1 − A where A is the likelihood of incorrectly 
rejecting a correct null hypothesis (type-I error).

We follow the Cameron and Baldock (1998) approach of devising our 
testing schedules such that sensitivity judged against a fixed worst-case 
minimum expected prevalence level, p across a finite population size of size 
N, while meanwhile also judging specificity against a population 
entirely free from disease. If prevalence is fixed and population size 
fixed, then the number of sample positives in a random sample taken 
without replacement follows the hypergeometric distribution. 

n+ ∼ Hyp(pN, (1 − p)N, n)

n+
j =

(
pN

j

)(
(1 − p)N

n − j

)

(
N

n

)
(4) 

where j indexes across the distribution. For large populations, this is 
asymptotically approached by the binomial distribution, a frequently 
used approximation. 

n+ ∼ Binom(n, p)

n+
j =

( n
j

)

pj(1 − p)n− j 

We can then calculate (from (3) and (4)) the distribution of positive 
test results in all samples from the wider population, T, as the expec-
tation of t across n+. 

Tk =
∑n

j=0
n+

j t(j)k

=
∑n

j=0

( pN

j

)(
(1 − p)N

n − j

)

(N

n

)

⋅
∑k

i=0

( j

i

)

(1 − β)iβj− i

( n − j

k − i

)

αk− i(1 − α)n− j− k+i

(5) 

The above allows us to calculate the herd sensitivity of the sampling 
effort in the case of presence of disease at a prevalence level of p, but we 

also need to consider herd specificity, and the situation of a healthy 
population. Where disease is absent, p = 0, there can only be false- 
positive test results (denoted T0), and the above equation simplifies to 
just the binomial distribution. 

T0 ∼ t− (0) ∼ Binom(n, α)

T0
k =

( n
k

)

αk(1 − α)n− k (6) 

2.3. Beyond known test parameters

A good reason for relaxing some of the assumptions made above and 
allowing for more variation in model parameters is that such variation is 
most likely to widen probability distributions based on them, with 
heavier tails, and a likely increase in our sample size calculation esti-
mates. Or to put it the other way, our sample size calculations may not 
be conservative enough.

We assume above our testing is performed with known sensitivity 
and specificity according to binomial distributions. A more conservative 
approach is to assume sensitivity and specificity are not known with 
certainty and have a likely distribution, for which a flexible approach is 
to describe them with a Beta distribution (Johnson et al., 2003; Booth 
et al., 2023). Summing binomial distributions where the mean is beta 
distributed produces the Beta-binomial distribution, written below in 
the form of gamma functions, as these can handle non-integer parame-
ters, unlike factorials: 

x ∼ BetaBinom(N, η, θ)

xi =
Γ(N + 1)Γ(i + η)Γ(N − i + θ)Γ(η + θ)

Γ(i + 1)Γ(N − i + 1)Γ(N + η + θ)Γ(η)Γ(θ).

Hyperparameters η and θ (we have already used the conventional 
symbols α and β or A and B) can be thought of as representing in a 
Bayesian context a prior body of evidence of positive (η) and negative (θ) 
results in earlier studies of the performance of the diagnostic test. Where 
η and θ are arbitrarily large but still have a defined ratio 0 ≤

η
η+θ ≤ 1, our 

Beta-binomial distribution reduces to a binomial distribution, recov-
ering our earlier model.

Let us assume that these hyperparameters are described by prior 
information where our test produced η− positive results from negative 
samples, θ− negative results from negative samples, η+ positive results 
from positive samples, and θ+ negative results from positive samples. In 
these cases, from a given number of positive or negative samples, we can 
revise our formulation for t+ and t− as follows: 

t+(n+) ∼ BetaBinom(n+, η+, θ+)

t+(n+)i =
Γ(n+ + 1)Γ(i + η+)Γ(n+ − i + θ+)Γ(η+ + θ+)

Γ(i + 1)Γ(n+ − i + 1)Γ(n+ + η+ + θ+)Γ(η+)Γ(θ+)

(7) 

t− (n+) ∼ BetaBinom(n − n+, η− , θ− )

t− (n+)i =
Γ(n − n+ + 1)Γ(i + η− )Γ(n − n+ − i + θ− )Γ(η− + θ− )

Γ(i + 1)Γ(n − n+ − i + 1)Γ(n − n+ + η− + θ− )Γ(η− )Γ(θ− )
.

(8) 

If we insert these two terms (7) and (8) into our previous equation for 
Tk we obtain the following monster: 
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Tk =
∑n

j=0

(
pN

j

)(
(1 − p)N

n − j

)

(
N

n

)

⋅
∑k

i=0

Γ(j + 1)Γ(i + η+)Γ(j − i + θ+)Γ(η+ + θ+)

Γ(i + 1)Γ(j − i + 1)Γ(j + η+ + θ+)Γ(η+)Γ(θ+)
.

⋅
Γ(n − j + 1)Γ(k − i + η− )Γ(n − j − k + i + θ− )Γ(η− + θ− )

Γ(k − i + 1)Γ(n − j − k + i + 1)Γ(n − j + η− + θ− )Γ(η− )Γ(θ− )
.

(9) 

We also need to update our expression for T0
k as a Beta-binomial 

rather than a binomial distribution: 

T0 ∼ BetaBinom(n, η− , θ− )

T0
k =

Γ(n + 1)Γ(k + η− )Γ(n − k + θ− )Γ(η− + θ− )

Γ(n + 1)Γ(n − k + 1)Γ(n + η− + θ− )Γ(η− )Γ(θ− )
.

(10) 

Under Implementation below, we will see how to work through all 
these gamma distributions more easily. To facilitate the same simplifi-
cation of the convolution of t+ and t− as before for the binomial distri-
bution, we perform a search to identify the tails of the distributions 
before calculating the outer product, a quantile function lacking in R.

2.4. Algorithm for determining sample size

Two user-preference parameters must be specified in order to 
determine required sample size, which are the population target sensi-
tivity 1 − Breq and specificity 1 − Areq required by the user, which can be 
considered as forms of type I and type II error for the hypothesis test of 
disease presence. The values specified for both will depend on the 
cost–benefit trade-off of testing that generates either false negatives (low 
sensitivity) or false positives (low specificity). Where test specificity is 
perfect, we have only the sample size to consider. Where false test 
positives may occur, we also need to consider the case where a low rate 
of positive test results may need to be overlooked – the cutpoint. In this 
case, we have a two-dimensional optimisation problem: to identify the 
minimum sample size and number of positive test results which satisfies 
our requirements both in terms of herd sensitivity and specificity. As 
before, we attempt to use built-in language features of R where possible 
in favour of coded loops to maximise computational efficiency and 
minimise complexity of the code. A combination of exhaustive search 
and bracketing is used, to avoid the potential for non-optimal solutions 
to be found.

1. The algorithm starts with an initial trial sample size of n = 1 and 
cutpoint number of positive tests c = 0, meaning that for a sample 
size of n, only c positive test results are accepted before the hy-
pothesis of freedom from disease is rejected.

2. Achieved herd sensitivity 1 − B and specificity 1 − A at herd level are 
determined as follows. For herd sensitivity, Tk (using (5) or (9)) is 
summed across k = c + 1…n, which are all cases where the number of 
positive test results exceeds the cutpoint. 

1 − B =
∑n

k=c+1
Tk 

For herd specificity, the simpler case where prevalence is zero need 
only be considered, in which case the equation for T collapses to a 
similar binomial or Beta-binomial distribution (using (6) or (10)). 
We sum over only those cases where the number of positive test re-
sults does not exceed the cutpoint: 

1 − A =
∑c

k=0
T0

k 

3. Sample size is bracketed by an initial nlo = 1 and nhi = N, to provide 
an algorithm which scales O(logN) in complexity with increasing 
population size.

4. Looping from Step 7 returns to here.
5. If at the current parameters, target sensitivity is not achieved, nlo is 

set to n, otherwise nhi is set to n. The new value of n is then set at the 
geometric mean of nlo and nhi, rounding up.

6. The sample is then re-evaluated, looping until the bracketing con-
verges on the lowest n which satisfies target sensitivity. If target 
sensitivity is not achieved, the algorithm terminates with an error 
message, indicating that even testing the entire population is not 
sufficient.

7. At this point, if target specificity is achieved, the algorithm is 
finished.

8. If not, c is incremented and nhi is reset to N, and the algorithm con-
tinues from Step 4. Increasing c always reduces the sensitivity of the 
test, and so a larger sample size than currently under consideration 
will be needed, and there is no need to reset nlo to 1.

9. If c reaches the total population size N, target specificity is not ach-
ieved, and the algorithm terminates with an error.

2.5. Implementation

The algorithm was developed in R using Shiny, hosted on GitHub and 
the user interface kept simple to avoid confusing language. The app is 
available on shinyapps.io at https://pinkmongoose.shinyapps.io/Shin 
ySampleSize/. For the fixed sensitivity/specificity model, the user 
needs to specify the population size N > 0, the proportion prevalence 
0 ≤p ≤ 1, test sensitivity and specificity 0 ≤β≤ 1 and 0 ≤α≤ 1, and the 
target herd sensitivity and specificity 0 ≤Breq≤ 1 and 0 ≤Areq≤ 1. A 
push button then runs the algorithm and provides the user with certain 
output. Before running the algorithm, the input is sanity-checked for the 
ranges above and some situations where input parameters guarantee a 
solution cannot be found. The completed application was tested using 
cohorts of an MSc class as victims, revising the UI after the first cohort. 
For the Beta-distributed sensitivity/specificity model, to simplify the 
input, the parameter sets η and θ are reparameterised as estimates and 
sample sizes nα and nβ, such that η+ = βnβ, θ+ = (1 − β)nβ, η− = (1 − α)nα 
and θ− = αnα. These are not required to be integers. It may be helpful to 
know that the standard deviation of the Beta distribution can be given 
by: 

σ =

̅̅̅̅̅
ηθ

√

(η + θ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
η + θ + 1

√

(Weisstein, 2021), which simplifies using our reparameterisation (where 
p stands for η or θ) to: 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p(1 − p)
np + 1

√

.

These ‘advanced’ tools – less easily interpreted by the casual user – 
are restricted to an ‘advanced’ input panel within the application. Op-
tions in the application include choice for sensitivity and specificity to be 
modelled as binomial versus Beta-binomial, and for coverage of the 
convolution operation for the distribution t, defaulting to the high value 
of 0.999 (0.001 exclusion of each tail).

The long but elegant formulation of the Beta-binomial distribution is 
used here as it can be evaluated using the sum of a number of log-gamma 
functions, provided in R by lgamma. This therefore requires no addi-
tional package dependencies, and avoids the problem of multiplying 
large numbers of gamma functions, which can quickly lead to numerical 
errors, as the largest gamma function which can be calculated with 64- 
bit floating-point arithmetic is Γ(171). There are two things to be wary 
of with using the log-gamma function. First, numerical errors (infinities) 
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can occur for unusual cases logΓ(x) where x ≤ 0 but these mostly 
correspond to the case where BetaBinom(⋅) = 0. This also occurs where 
η = 0 or θ = 0, which can be avoided by adding a very small positive 
value to the operand, set arbitrary at 10− 10.

3. Results

3.1. Application output

Achieved herd sensitivity and specificity 1 − B and 1 − A are pro-
vided to the user, which in the case of a successful calculation are always 
in excess of 1 − Breq and 1 − Areq, as well as the required sample size n 
and cutpoint c. A prose interpretation of these values is given. As well as 
textual output, the Shiny application also provides further diagnostics in 
the form of a receiver operator characteristic (ROC) analysis, plotting 
herd sensitivity versus herd specificity for a variety of cutpoints c ∈ {0, 
1…n} for the determined sample size n. This plot includes the values of 
1 − Breq and 1 − Areq as well as the line B = 1 − A (corresponding to an 
uninformative test) for comparison. This model output is shown in 
Fig. 1. The area under the curve is informative, where the higher the 
area, the more informative the test, with coverage of half the plot being 
no better than guesswork.

3.2. Case studies

To demonstrate agreement with other approaches to sample size 
calculation, and explore sensitivity to model assumptions, results are 
shown for three baseline scenarios. 

‘MSc’ scenario This scenario is used as a demonstration for our 
students. Here, 10 % minimum infected preva-
lence exists amongst a population of 50, test 
sensitivity and test specificity are set to 98 %, and 
desired herd sensitivity and herd specificity are 
set to 95 %. In class, we consider the simpler case 
of where test sensitivity and test specificity are 
known with high accuracy, and test positives and 
test negatives use the binomial distribution, with 
sampling without replacement (hypergeometric).
This is the model output shown in Fig. 1. We 
obtain a required sample size of 39 and a cutpoint 
number of reactors of 2. Following the approach 
of Sergeant (2018) the prose description of the 
results is described as If a sample size of 39 is taken 
and 2 or fewer reactors are found, then the proba-
bility that the population is free from disease at a 

prevalence of 5 / 50 (0.1) is 0.9586. This is written 
below in short as 2/39.

‘Cameron & Baldock’ This scenario considers a survey for foot and 
mouth disease (FMD) considered by Cameron and 
Baldock (1998). Here, a herd of 265 animals is 
considered, where in the event of infection a 
minimum prevalence of 30 %. Target herd and 
test sensitivity and specificity parameters are as 
for the ‘MSc’ scenario. Testing is performed as 
above. Our application generates for this scenario 
a sample size of 1/14, which agrees with that of 
Cameron and Baldock. Further comparisons are 
made with this Ausvet model output in Table 2
showing close agreement between the two ap-
proaches, with some deviation where the sample 
size is so large it approaches the whole popula-
tion. Table 2 contrasts two testing situations: the 
second with a test with lower sensitivity and 
specificity (90 %) but with a condition that is 
easier to find (25 % expected minimum 
prevalence).

‘Johnson et al.’ Derived from the above, this scenario also con-
siders a herd of 265 animals and minimum 
infected prevalence of 30 %. However, here we 
use the Beta-distribution parameters specified in 
Johnson et al. (2003) corresponding to η+ =

68.74, θ+ = 4.57, η− = 3.17 and θ− = 107.2 and 
test sensitivity and specificity of 0.938 and 0.971, 
reflecting that these test statistics are not known 
exactly. Again, we fix target herd sensitivity and 
specificity both to 95 %. Our application gener-
ates a sample size here of 2/19, which is 
marginally more conservative than the Johnson 
et al. sample size of 2/18.

This last scenario provides an opportunity to demonstrate sensitivity 
of sample size calculation to the amount of prior information nβ and nα 
upon which sensitivity and specificity estimates are based. Both values 
are varied in the range 3–1000 in Fig. 2, on a log scale, showing the 
outputs of required sample size n and cutpoint c. In this scenario, a 
smaller amount of prior information results in more uncertainty and an 
increase in both required sample size and in the cutpoint, and required 
sample size and cutpoint are themselves seen to be correlated. However, 
the approach is considerably more tolerant of uncertainty in sensitivity 
than in uncertainty in specificity as can be seen in the graph, and the 
effect is equivalent to a modest decrease in sensitivity, which sample- 

Fig. 1. ROC plot for ‘MSc’ sample calculation scenario. Herd sensitivity and specificity are shown for various cutoff numbers of reactors for a population size of N =
50 and p = 10 % prevalance, using test sensitivity and test specificity both of 1 − β = 1 − α = 98 %. Test positives and negatives use the binomial distribution, 
sampling without replacement. Shaded areas show acceptable range above target herd sensitivity and specificity both of 1 − Breq = 1 − Areq = 95 %. The diagonal 
shows the result for an uninformative test.
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size calculations are generally more tolerant of than decreases in 
specificity.

4. Discussion

4.1. Implementation and assumptions

There are some implementation points of our approach here to note. 
The algorithm here fits one parameter, sample size n by bracketing, and 
cutoff c stepwise. This works well for most scenarios since in general c ≪ 
n and is close to zero where specificity is high. This means there are far 
fewer options for c to search through, while benefitting from the fast 
search for n. For N = 5000, p = 0.1, test specificity 1 − α = 1, and 
sensitivity 1 − β = 1 it is nearly instantaneous on the author’s laptop 
(Dell Inspiron 14 7000 [7490]; Intel Core i5-10210U processor). With 
higher population sizes and lower specificity, the application takes 
notably longer to process, up to a few seconds for 1 − β = 0.95.

A potential speed saving can be made by tolerating exclusion of more 
of the distribution tails while performing the convolution of the prob-
ability distributions, however this is limited as an option in the Shiny 
application settings as it does affect sample sizes if taken too far. For 
example, for the example of N = 40, 1 − α = 0.9, 1 − β = 0.9, p = 0.25 
from Table 2 and default coverage of tails (0.999) we obtain c∕n = 6∕32. 
Reducing coverage to 0.99 affects the result producing 6/33. Higher 
values for the coverage slow the program at higher population sizes.

Where multiple replicate measures of sensitivity or specificity exist, 
suitable hyperparameters could be chosen on the basis of knowing the 

mean and variance of a Beta distribution are η
η+θ and ηθ

(η+θ)2
(η+θ+1)

. 

Another approach to choosing hyperparameters on the basis of known 
bounds for sensitivity and specificity was made by Johnson et al. (2003). 
This model produces an expectation for sample size based on specificity 
and sensitivity uncertainty, however there may be circumstances where, 
e.g. for precautionary purposes, a worst-case scenario is considered. In 
this case, the user may wish to consider the simpler binomial assumption 
for sensitivity and specificity, but where these are drawn as a particular 
percentile, e.g. 5 %, from the Beta-binomial distribution, e.g. using the R 
statement

qbeta(0.05, eta, theta).

An assumption made in the model above is that sensitivity and 
specificity are uncorrelated. There may be correlations amongst 
parameter estimates, e.g. if for whatever reason, overall positive test 
rates vary amongst trials, a positive correlation between estimates for 
both true positives and false positives would be expected, which implies 
negative correlation between sensitivity and specificity. Potential rea-
sons for such correlations are discussed by Li and Fine (2011), particu-
larly relating to prevalence itself, e.g. where higher prevalence also 
means more severe disease, or where pathologists are more willing to 
accept positive test results amongst high-prevalence populations. 
Similar complexities exist where tests are combined, pooled, or dupli-
cated, where sensitivity and specificity must be considered as compound 
values with underlying reasons for test failure due to multiple factors, 
including the subject itself, sample collection, operator, interpretation, 
and chance (Greiner and Gardner, 2000).

Our algorithm for determining n and c is based on these variables 
only taking discrete, integer values. This makes sense in a practical ca-
pacity, but relaxing this assumption would allow greater precision 
where numbers such as cutpoints are small. Would not an output 
showing a cutpoint of c = 0.5 not be quite different from c = 1.5? 
Mathematically, this might be achieved by altering the expression for T 
replacing all occurrences of factorials and binomial coefficients with 
their equivalent formulation in terms of the gamma function, and 
replacing sums with integrals. This could potentially allow a whole new 
range of approaches to optimising n and c based on, for example, 
gradient-following algorithms, where points close together in parameter 
space are evaluated.

4.2. Comparison with simpler approaches

Des Clers (1994) discusses two approximations for sample sizes in 
the context of aquaculture prevalence studies, for small and large pop-
ulations. It is useful to compare these approaches – easily calculated – 
with our more computationally intensive approach. For large pop-
ulations (and, implicitly, high specificity), this is given as (refactored) 

n =
− logBreq

(1 − β)p
.

Table 2 
Comparison and diagnostics of sample size estimates.

Results from this paper Ausvet

N p 1 − β 1 − α 1 − B 1 − A c∕n
∑

t 1 − B 1 − A c∕n

100 0.1 0.95 0.95 0.951 0.956 7/79 0.998 0.953 0.956 7/79
1000    0.952 0.956 9/108 0.999 0.953 0.956 9/108
10,000    0.951 0.953 9/109 0.999 0.952 0.953 9/109
40 0.25 0.90 0.90 0.951 0.964 6/32 0.999 0.964 0.977 7/36
100    0.955 0.963 7/39 0.999 0.956 0.963 7/39
1000    0.955 0.952 7/41 0.999 0.956 0.952 7/41

1 − Breq and 1 − Areq are not listed, but the achieved 1 − B and 1 − A are instead presented to allow better comparison between models. The proportion coverage by the 
algorithm of the mass of distribution t is shown as 

∑
t

Fig. 2. Sensitivity analysis of Beta hyperparameters for ‘Johnson’ sample 
calculation scenario. The required sample size n is shown by the contour lines 
and the cutpoint number of positive tests c by coloured regions for different 
sizes of prior information for determining test sensitivity nβ and test specificity 
nα. Prior information sizes were gridded on a log10 scale across several orders of 
magnitude with step size 

̅̅̅
110

√
0. Other parameters are test sensitivity 1 − β =

93.8 %, test specificity 1 − α = 97.1 %, population size N = 265, number 
infected pN = 80, and required sensitivity and specificity both 1 − Breq = 1 −
Areq = 95 %.
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For 1 − Breq = 0.95, the numerator becomes 2.996, giving rise to the 
‘rule of three’ sample size approximation name.

For small populations where the differences between the binomial, 
Poisson, and hypergeometric distributions become important, Des Clers 
gives this as (again, refactored) 

n =

⎛

⎜
⎝1 − Breq

1
(1− β)pN

⎞

⎟
⎠

(

N −
(1 − β)pN − 1

2

)

Comparison with the algorithm described above shows this remains a 
useful approximation when specificity is high. For example, for test 
sensitivity 1 − β = 0.95, N = 50, p = 0.1, and herd sensitivity 1 − Breq =

0.95, Des Clers suggests a sample size of 22.5 (limit of large population, 
31.5) which compares well with our result of 23. For N = 1000, we get 
29.6 and 30 respectively. For a rarer disease, e.g. N = 1000 and p = 0.01, 
we get 269.3 versus 272 (limit of large population, 315.3). This 
approximation will become less appropriate, and very liberal, where test 
specificity is substantially less than perfect, a scenario not considered in 
the Des Clers model.

4.3. Conclusion

In short, this new application and associated algorithm provides 
another tool in the epidemiologists toolbox, provided here open source 
and with a front end which is easy to use. This application may be used 
by researchers as part of experimental design, or for planning routine 
surveillance, and it is also scalable as a teaching aid for large classes 
given its ease of deployment directly from Github. The subtle differences 
in sample size generated by different models may seem small, but it is 
exactly in the tails of such distributions we tend to be operating.
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